
Integrated Hardware Garbage Collection
for Real-Time Embedded Systems

By

ANDRÉS AMAYA GARCÍA

A dissertation submitted to the University of Bristol in
accordance with the requirements for award of the degree of

DOCTOR OF PHILOSOPHY in the Faculty of Engineering.

Department of Computer Science
UNIVERSITY OF BRISTOL

AUGUST, 2021

Word count: sixty-five thousand

Copyright © 2021 Andrés Amaya García

Integrated Hardware Garbage Collection for Real-Time Embedded Systems is licensed under
Attribution-NonCommercial 4.0 International.

https://creativecommons.org/licenses/by-nc/4.0/

http://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

ABSTRACT

Modern programming languages, like Python and C#, provide productivity and trust
benefits that are key in managing the growing complexity of computer systems. However,
modern language implementations rely on software garbage collection which imposes

high overheads and unpredictable pauses. This is tolerable in large computer systems, like
desktops and servers, but impractical for real-time embedded systems. Hence modern languages
are rarely used to program embedded devices.

This thesis investigates a shift in architecture towards hardware garbage collection to better
support modern languages in embedded devices while meeting their unique performance and
real-time requirements. We present an Integrated Hardware Garbage Collector (IHGC) that
demonstrates this approach: a collector that is tightly coupled with the processor and runs
continuously in the background. Our design allocates a memory cycle to the collector when the
processor is not using the memory. The IHGC achieves this by careful subdivision of collection
work into single-memory-access steps that are interleaved with the processor’s memory accesses.
We also introduce a static analysis technique to guarantee that real-time programs are never
paused by the IHGC. As a result, our collector eliminates run-time overheads and is suitable for
real-time embedded systems.

The IHGC is evaluated through simulation based on a hardware implementation model using
modern fabrication technologies. Our experiments indicate that the IHGC offers 1.5-7 times
better performance compared to a conventional processor running a software garbage collector.
In addition, our static, real-time analysis technique was evaluated through practical use cases
showing that an IHGC system meets specific timing constraints. This thesis concludes that the
IHGC delivers in real-time the benefits of garbage collected languages without the complexity
and overheads inherent in software collectors.

iii

DEDICATION AND ACKNOWLEDGEMENTS

My research studies at the University of Bristol have been a wonderful journey culminating
in the completion of this thesis. This experience would not have been possible without
my supervisor, David May, who has provided guidance, support and encouragement from

start to finish. Many of David’s ideas motivated and inspired the work presented in this thesis.
I also owe special thanks to Kerstin Eder, head of the Trustworthy Systems Laboratory, who
welcomed me to the research group and provided valuable advice throughout my studies.

I am grateful to many other people who contributed to this work in various ways. Ed Nutting,
a fellow student, who shared his knowledge on hardware garbage collection and collaborated with
me in several research projects. Kyriakos Georgiou who introduced me to real-time computing
and provided access to critical tools to get my own investigations underway. Jaeden Amero and
Douglas Orr who provided valuable advice and feedback that guided my work. Jeremy Morse
whose advice and help was crucial to developing compiler backends with LLVM. Henk Muller,
Simon Clemow and James Hanlon who provided valuable expertise that enabled me to put my
research in context.

Finally, I would like to thank the Engineering and Physical Sciences Research Council
(EPSRC) for providing the financial means to support my studies.

v

TABLE OF CONTENTS

Page

List of Tables xiii

List of Figures xv

List of Listings xvii

1 Introduction 1
1.1 Memory Management . 2

1.1.1 Explicit Memory Managers . 3

1.1.2 Automatic Memory Managers . 4

1.2 Real-Time Systems . 4

1.3 Thesis Questions and Contributions . 6

1.4 Thesis Outline . 9

1.5 Related Publications . 10

I Background 11

2 Fundamentals of Garbage Collection 13
2.1 Basic Garbage Collection Algorithms . 14

2.1.1 Tracing . 14

2.1.2 Reference Counting . 18

2.1.3 Comparing Basic Garbage Collection Algorithms 19

2.2 Generational Garbage Collection . 20

2.3 Incremental and Concurrent Garbage Collection . 21

2.4 Correctness of Incremental and Concurrent Collectors 22

2.4.1 Black Mutator . 24

2.4.2 Gray Mutator . 24

2.4.3 Incremental and Concurrent Compacting . 24

2.4.4 The Cost of Read and Write Barriers . 25

2.5 Characterizing Garbage Collection Pauses . 25

vii

TABLE OF CONTENTS

2.6 Identifying Pointers . 26

2.7 Summary . 28

3 Real-Time Garbage Collection 31
3.1 System Requirements and Garbage Collectors . 32

3.2 Work-Based Real-Time Garbage Collection . 32

3.2.1 Baker’s Garbage Collector for LISP . 33

3.2.2 Brooks’ Garbage Collector for LISP . 34

3.2.3 The Treadmill . 34

3.2.4 Yuasa’s Garbage Collector for LISP . 35

3.2.5 Garbage Collection for the Jamaica Virtual Machine 35

3.2.6 Blelloch and Cheng’s Multi-Core Garbage Collector 36

3.2.7 Ritzau’s Reference Counting Garbage Collector 37

3.3 Problems with Work-Based Real-Time Garbage Collection 37

3.4 Time-Based Real-Time Garbage Collection . 38

3.4.1 Henriksson’s Low Priority Garbage Collection 38

3.4.2 Metronome . 39

3.4.3 Kim et al’s Copying Garbage Collector . 40

3.4.4 Chang’s Hybrid Garbage Collector . 40

3.4.5 Garbage Collection for Safety Critical Java 41

3.5 Problems with Existing Real-Time Garbage Collectors 42

3.6 Tax-and-Spend: An Alternative Scheduling Approach 42

3.7 Real-Time Garbage Collectors for Multi-Core Systems 43

3.8 Summary . 44

4 Hardware Garbage Collection 47
4.1 Hardware-Assisted Garbage Collection . 47

4.1.1 Pauseless . 48

4.1.2 Joao et al’s Hybrid Garbage Collector . 48

4.1.3 Maas et al’s Mark-Sweep Accelerator . 49

4.1.4 Schoeberl and Puffitsch’s Object Copying Accelerator 50

4.2 Hardware-Implemented Garbage collection . 50

4.2.1 The Garbage Collected Memory Module . 51

4.2.2 Active Memory Processor . 52

4.2.3 Meyer’s Copying Garbage Collector . 52

4.2.4 Stanchina and Meyer’s Mark-Compact Garbage Collector 53

4.2.5 Gruian and Salcic’s Mark-Compact Garbage Collector 53

4.2.6 Garbage Collection for Reconfigurable Hardware 54

4.3 Summary . 55

viii

TABLE OF CONTENTS

II Integrated Hardware Garbage Collection 57

5 Designing an Integrated Hardware Garbage Collector 59
5.1 System Overview . 60

5.2 Pointer and Data Types . 61

5.3 Directory . 62

5.4 Garbage Collector . 63

5.4.1 Mark Roots . 64

5.4.2 Mark Objects . 66

5.4.3 Compact . 66

5.5 Memory Allocation . 70

5.6 Marking On Load and Memory Access Redirection 71

5.7 Alternative IHGC Designs . 73

5.7.1 The Collection Algorithm . 73

5.7.2 Mark Roots . 74

5.7.3 Marking On Store . 75

5.8 Summary . 76

6 Hard Real-Time Analysis with the IHGC 77
6.1 Pauses in the IHGC . 77

6.2 Analysis Overview . 79

6.3 Worst-Case Memory Requirement . 79

6.4 Timing Model for the IHGC . 81

6.4.1 Initialization and Termination (tinit) . 81

6.4.2 Mark Roots (troots) . 81

6.4.3 Mark Objects (tmark) . 82

6.4.4 Compact (tcompact) . 83

6.5 Static Program Analysis . 84

6.5.1 Memory Allocated (a) and Spare Memory Cycles (t f) 84

6.5.2 Live Size (n, r, d, s, c) . 86

6.5.3 Number of Pointers (p) . 87

6.6 Summary . 87

7 Experimental Evaluation 89
7.1 Evaluation Platform . 89

7.2 Benchmarks . 90

7.3 Compiler and Toolchain . 91

7.4 Measuring Performance . 92

7.4.1 Characterizing Memory Cycles . 92

ix

TABLE OF CONTENTS

7.4.2 The IHGC and Software Memory Managers 95

7.4.3 Pauses . 99

7.4.4 Tag, Directory and Header Overheads . 101

7.5 Hard Real-Time Analysis in Practice . 102

7.5.1 Real-Time Evaluation Methodology . 102

7.5.2 Real-Time Analysis Benchmarks . 103

7.5.3 Case Study: Converter . 104

7.5.4 Case Study: Router . 108

7.5.5 Scaling Up the Hard Real-Time Analysis . 110

7.6 Summary . 110

III Architecting a Garbage Collected Embedded System 113

8 Garbage Collection in Instruction Set Design 115
8.1 Problem Statement . 115

8.2 Architectural Challenges . 116

8.2.1 Background . 117

8.2.2 Operations on Pointer and Value Types . 118

8.2.3 Function Call Stack . 122

8.2.4 Exception and Interrupt Handling . 127

8.2.5 I/O Devices . 128

8.2.6 Linking Programs Statically . 129

8.3 Case Studies . 131

8.3.1 BEEBS and TACLe Benchmark Suites . 131

8.3.2 FreeRTOS and Mbed TLS . 132

8.3.3 LittlevGL . 134

8.3.4 MicroPython . 135

8.4 Summary . 137

9 Microarchitecture of the IHGC 139
9.1 Overview . 139

9.2 Background . 141

9.2.1 Process Technology . 141

9.2.2 Memory . 142

9.3 Microarchitecture of an IHGC System . 144

9.3.1 Main Memory . 144

9.3.2 Directory . 145

9.3.3 IHGC State Machine . 146

9.3.4 Processor Pipeline . 150

x

TABLE OF CONTENTS

9.3.5 Interleaving . 154

9.4 Hardware Costs . 155

9.4.1 IHGC State Machine . 155

9.4.2 Main Memory . 156

9.4.3 Directory . 157

9.5 Clock Speed . 159

9.6 Discussion . 160

9.6.1 Clock Speed . 161

9.6.2 Memory Overheads . 161

9.6.3 Scaling Up . 161

9.7 Summary . 162

10 Evaluation of the IHGC Microarchitecture 163
10.1 Evaluation Platform . 163

10.2 Benchmarks . 164

10.3 Compiler and Toolchain . 164

10.4 Results . 165

10.4.1 Memory Requirements . 165

10.4.2 Characterizing Memory Cycles . 168

10.4.3 Pauses . 170

10.4.4 Pipeline Stalls . 178

10.5 Summary . 181

IV Conclusions 183

11 Conclusions and Future Work 185
11.1 Contributions . 186

11.1.1 Design of the IHGC . 186

11.1.2 Real-time Analysis with the IHGC . 187

11.1.3 The IHGC in a Practical Embedded System 187

11.1.4 Evaluation of the IHGC . 187

11.2 Future Work . 188

11.2.1 Software Ecosystem . 188

11.2.2 Real-Time Analysis . 189

11.2.3 Scaling Up the IHGC . 190

11.3 Conclusions . 191

Appendices 193

xi

TABLE OF CONTENTS

A Integrated Hardware Garbage Collector State Machine 195
A.1 Notation . 195

A.2 Definitions . 196

A.3 Initialization . 199

A.4 Mark Roots . 200

A.5 Mark Objects . 200

A.6 Compact . 202

A.7 Termination . 203

A.8 Memory Access . 203

A.9 Memory Allocation . 204

A.10 Helper Functions and Procedures . 205

Bibliography 207

xii

LIST OF TABLES

TABLE Page

2.1 Comparison of four basic garbage collection algorithms. 19

2.2 Comparison of techniques to identify pointers in memory. 28

3.1 Comparison of real-time garbage collection algorithms. 45

4.1 Comparison of hardware garbage collection algorithms. 56

6.1 Variables for real-time analysis in the IHGC. 80

6.2 Program parameters for real-time analysis. 83

6.3 Example calculating an estimate for t f . 86

7.1 Results of analyzing BEEBS and TACLe benchmarks. 103

9.1 Process nodes used to manufacture ARM Cortex-M processors 141

9.2 Synthesized open-source designs compared in Figure 9.9. 157

9.3 SRAM area for selected capacities. 157

9.4 Interconnect features for the 45 nm process nodes. 159

A.1 Metadata items stored in each directory entry. 197

xiii

LIST OF FIGURES

FIGURE Page

2.1 An example of Cheney’s copying collector in operation. 17

2.2 Data structures forming cycles. 18

2.3 Compacted and fragmented memory. 20

2.4 Incremental and concurrent garbage collection. 22

2.5 Reachable objects that mistakenly remain unmarked after tracing. 23

2.6 Minimum Mutator Utilization (MMU). 26

5.1 Interleaving memory cycles. 60

5.2 Overview of an IHGC system. 61

5.3 Memory access resolution. 62

5.4 IHGC state machine. 64

5.5 Root pointers hidden from the garbage collector. 65

5.6 IHGC compact stage. 67

5.7 The IHGC’s implementation of object copying. 69

5.8 The IHGC’s implementation of the Zero Word state. 70

5.9 Memory access redirection during the IHGC’s compact stage. 72

6.1 Allocated, garbage and collected memory timeline. 78

6.2 CFG and ILP for static program analysis. 84

7.1 Distribution of memory cycles in the IHGC. 93

7.2 Run-time performance of BEEBS on the IHGC. 96

7.3 Heap memory requirements of the MicroPython benchmarks. 97

7.4 Run-time performance of MicroPython on the IHGC. 98

7.5 IHGC pauses measured empirically. 100

7.6 Estimated memory requirements for converter. 105

7.7 Estimated memory requirements for router. 109

8.1 Conditional branch with pointer operand. 121

8.2 Bitwise-or instructions with pointer operands. 121

8.3 Stack layout using ATPCS. 121

xv

LIST OF FIGURES

8.4 Stack layout using linked stack frames. 124

8.5 Extending the function call stack within an existing stacklet. 126

8.6 Dynamically allocating a new stacklet to extend the function call stack. 127

8.7 Organization of global variables in memory. 130

9.1 Directory contention in a pipelined microarchitecture. 140

9.2 Structure of a 6 transistor (6T) SRAM bit-cell. 142

9.3 Architecture of an SRAM. 143

9.4 Area of single-ported and dual-ported SRAMs. 145

9.5 Microarchitecture of the IHGC state machine. 147

9.6 Timing of IHGC state transitions. 148

9.7 Timing of IHGC state transitions with buffering. 149

9.8 Structure of the processor pipeline. 150

9.9 Hardware cost of the IHGC state machine. 156

9.10 Area overhead of the directory. 158

9.11 Propagation delays for 16-bit and 32-bit adders. 160

10.1 Memory requirements for global variables. 166

10.2 Heap memory requirements of the MicroPython benchmarks. 167

10.3 Distribution of memory cycles in the IHGC. 169

10.4 Instruction sequence preventing the IHGC from performing a state transition. 170

10.5 IHGC pauses for selected heap and stacklet sizes. 171

10.6 Memory allocations in TACLe, BEEBS and egui for selected stacklet sizes. 172

10.7 Memory allocations in MicroPython for selected stacklet sizes. 173

10.8 IHGC pauses for selected data widths. 176

10.9 Distribution of memory access instructions by type. 177

10.10 Memory cycles available to the IHGC when caching stack frame metadata. 178

10.11 IHGC pauses when caching stack frame metadata. 179

10.12 Pipeline stalls due to directory contention. 180

A.1 IHGC state machine corresponding to the speccam specification. 199

xvi

LIST OF LISTINGS

LISTING Page

2.1 Recursive implementation of the basic tracing algorithm. 15

2.2 Compact stage of the LISP 2 garbage collector. 16

6.1 Program that causes an overestimate for m. 87

8.1 Invalid type conversions between pointer an integer in MicroPython. 119

8.2 Recursive factorial. 125

8.3 Recursive Fibonacci. 125

8.4 malloc, calloc and free implementation in an architecture with the IHGC. 131

8.5 Implementation of the C standard library function memcpy from Newlib. 132

8.6 FreeRTOS calculating the address of the last word in a contiguous stack. 133

8.7 Memory access bug in LittlevGL’s source code. 134

8.8 MicroPython type violations when handling pointers. 135

xvii

C
H

A
P

T
E

R

1
INTRODUCTION

Modern programming languages, like Python and C#, are now the most popular and

fastest growing among programmers [45, 166]. The defining feature of these languages

is that they provide high-level data representation and control structures which address

two key challenges: productivity and trust. Modern languages accelerate software development

because they allow engineers to focus on coding the program’s functions without the burden of

managing tedious implementation details. So these languages increase productivity compared to

older technologies like C. Modern languages also boost trust as they facilitate error prevention,

detection and containment by, for example, eliminating memory usage errors which account

for 50-70% of software vulnerabilities [174, 177]. As a result, these languages now dominate

rapid-development environments, such as mobile phone apps and web services.

However, existing implementations of modern languages incur high performance and memory

overheads. This is tolerable in large systems, like desktops and servers, which have abundant

memory and processing resources, and where low software development costs and short time-to-

market are valued above performance. But the drawbacks of modern language implementations

are unacceptable for the embedded systems discussed in this thesis. Memory and processing

are scarce commodities in these systems because they are small, constrained and have flat

memory hierarchies sometimes even without virtual memory support or caching. Hence, modern

languages are rarely used in embedded systems, despite their productivity and trust benefits, as

they would exacerbate performance problems.

Further, embedded systems increasingly communicate with each other or interact with their

physical environment. Both activities require these devices to perform tasks in response to

external stimuli, often within a time deadline. So embedded systems are real-time because the

time when the output of a task is delivered is as important as the output value itself. Performing

1

CHAPTER 1. INTRODUCTION

the task after a deadline expires is equivalent to a failure and may have lethal consequences.

For example, an embedded device managing an airplane sensor must deliver measurements in

a timely fashion to prevent accidents. However, existing implementations of modern languages

introduce unpredictable pauses during program execution making it difficult to ensure that tasks

are performed on time. Therefore, modern languages are not used to program real-time embedded

systems.

Emerging markets, such as the Internet of Things (IoT), have fueled a desire to incorporate

more functionality into embedded systems. For example, a household thermostat that could

only be used to set the room temperature nowadays also has internet connectivity, network

security, voice controls, power-saving features, etc. The extra functionality resulted in growing

software complexity giving rise to productivity and trust issues. Hence, there is renewed interest

in supporting modern languages in embedded systems. Multiple companies and open-source

projects, like MicroPython and Zerynth, are attempting to develop implementations of modern

languages suitable for embedded devices [84, 115, 196]. However, their applications are limited

because these implementations rely on software garbage collectors.

The garbage collector is an essential component in the implementation of modern languages.

It automatically identifies and reclaims unused memory on behalf of the programmer, a task

that is otherwise tedious and error-prone. But software garbage collectors are the cause of the

performance and real-time drawbacks of modern languages. The main motivation behind this

thesis is to solve these problems with garbage collection to enable the practical use of modern

languages in embedded systems.

1.1 Memory Management

Memory is a fundamental component of every computing system. It is a finite resource that

must be managed to ensure that the program’s space requirements are met. However, memory

management has remained an open problem for decades despite extensive research in the area.

It is a recurrent and important cause of safety and reliability issues in computer systems. There

are two main approaches to memory management in embedded systems: static and dynamic.

When using static memory management, the space allocated for variables, arrays and even

the program stack is reserved at compilation time and allocated at startup. The advantage is

that the program’s execution time is highly predictable, so static memory is suitable for real-time

systems [79]. However, the memory layout is difficult to change at run-time, so enough space

must be reserved in advance to satisfy the program’s memory requirements. For example, a

buffer must have enough capacity to accommodate the largest possible packet that might be

delivered via a network interface. This restriction causes memory overheads because the system

must reserve sufficient storage in advance to accommodate the theoretical worst-case memory

requirement of every object that the program allocates.

2

1.1. MEMORY MANAGEMENT

The limitations of static memory management are difficult to circumvent in systems whose

behavior can only be determined at run-time. For example, a processor that is shared by multiple

applications must allocate and reclaim memory as processes start and terminate. Similarly,

programs written using modern languages often allocate variable amounts of memory depending

on the type of the input values supplied at run-time. These problems are addressed by dynamic

memory management algorithms that allocate space as requested by the program at run-time.

The memory is reclaimed when it is no longer needed and can be repurposed to fulfil future

allocation requests. Dynamic memory managers can be broadly classified as explicit or automatic

according to the interface presented to the programmer.

1.1.1 Explicit Memory Managers

In explicit memory management, the programmer must indicate, usually via a function call, when

allocated memory becomes unused and can be reclaimed. The malloc and free functions in the

C standard library are perhaps the most famous realization of an explicit memory management

interface.

Explicit memory management effectively delegates the tedious and error-prone memory

management burden to the programmer which commonly results in dangling pointers and

memory leaks. Dangling pointers are references to already freed objects. Hence, the pointers are

invalid, so using them to access memory causes serious memory safety violations. Memory leaks

occur when unused memory is not freed. The leaked memory will never be reclaimed and the

system eventually appears to run out of storage space. Dangling pointers and memory leaks

remain a major problem and are difficult to find, so there is much existing research attempting

to detect them automatically. For example, static program analysis tools, like Coverity, issue a

warning when such bugs are found [51, 78, 175], but they generate many false positive warnings

and do not guarantee the absence of memory management bugs because the analysis problem is

undecidable.

Explicit memory managers have been studied extensively, but most proposals are unsuitable

for embedded systems. This is because the run-times of explicit memory allocation and free

operations are difficult to analyze statically, so these memory managers cannot be used in real-

time systems [136]. In addition, explicit memory managers rarely compact the heap, so they

suffer from fragmentation: after repeated allocations and deallocations, the free memory becomes

segmented into small blocks that cannot be used to satisfy allocation requests. As a result of these

problems, programming safety standards, like MISRA C [116], discourage the use of explicit

memory managers.

The drawbacks of explicit memory managers have forced programmers to develop domain-

specific memory managers for embedded systems. Thus, new domain-specific, explicit memory

managers are coded from scratch for almost every embedded project in an effort to fulfil the

system’s real-time, performance and reliability constraints. For example, the open-source lwIP

3

CHAPTER 1. INTRODUCTION

networking stack includes a custom memory manager to efficiently handle packet data [59].

Similarly, the open-source FreeRTOS process scheduler provides a choice of five custom memory

managers [12]. But domain-specific memory managers increase program complexity because they

require a substantial amount of code to implement and operate correctly. The design of these

managers is very closely tied to a particular application, so there are few opportunities for code

reuse. Domain-specific memory managers are also difficult to use, often inefficient and rarely

tested thoroughly giving rise to performance and reliability issues as Zorn found in a previous

study [198].

In general, modern programming languages do not rely on explicit memory management

interfaces due to the reliability and usage problems outlined above. Therefore, we cannot rely on

explicit memory managers to support modern languages in real-time embedded systems.

1.1.2 Automatic Memory Managers

In automatic memory management, unused, or garbage, objects in memory are identified and

reclaimed by the system without programmer intervention. Automatic memory management is

implemented by a component of the runtime called the garbage collector.

Automatic memory managers relieve the programmer from the memory management respon-

sibility, so they overcome most drawbacks of explicit memory managers. Namely, programming

errors, like dangling pointers and memory leaks to unreachable objects, are eliminated and

garbage collectors often compact memory to avoid fragmentation. However, garbage collection is

often performed in software, so it incurs high run-time and memory overheads because the collec-

tion algorithms are unsuitable to be efficiently implemented in conventional computers. Previous

studies found that software collectors account for up to 40% of a program’s run-time [43, 67]. In

addition, software garbage collectors introduce unpredictable pauses during program execution

that prevent systems from meeting their deadlines. As a result, existing automatic memory

managers are unsuitable for real-time embedded systems.

Automatic memory management, and garbage collection, are defining features of modern

programming languages. They underpin the implementation of these languages and facilitate

error prevention, detection and containment. Therefore, overcoming the performance and real-

time drawbacks of garbage collection is critical to supporting modern programming languages in

embedded systems and delivering their productivity and trust benefits.

1.2 Real-Time Systems

Any discussion on embedded systems requires considering real-time behavior. In these systems,

calculating the correct result is as important as performing the calculation on time. Delivering

the result late is considered a failure. Real-time systems can be broadly classified in two groups.

4

1.2. REAL-TIME SYSTEMS

Soft Real-Time: It is desirable for the system to meet all its deadlines, but occasionally missing

one is acceptable. For example, an interactive system with a display is soft real-time. A

missed deadline that causes a delay to refresh the screen only degrades user experience,

but does not lead to serious consequences.

Hard Real-Time: The system must meet all its timing deadlines. Missing a deadline is equiva-

lent to an incorrect calculation and might result in catastrophic consequences. For example,

an autonomous vehicle not reacting in time to a change in its environment might crash.

Real-time systems must be evaluated by their ability to meet deadlines instead of only

considering overall run-time performance. It is not guaranteed that systems with the shortest

overall run-time, i.e. the least performance overheads, will always meet their deadlines. For

example, the software collectors with the shortest overall run-times often perform memory

management operations that take a long time to complete. The system could miss a deadline

during that time because the program cannot perform any other work while the collector is

running. Therefore, all operations that the real-time system performs, such as memory allocations,

must have predictable and short run-time to ensure that deadlines are met.

Distinguishing between average-case and worst-case behavior is also important when dis-

cussing real-time systems [79]. For most applications, including soft real-time ones, it is the

average-case that matters since it occurs frequently. Furthermore, it is often acceptable to op-

timize the average-case at the expense of longer worst-case overheads. The development and

testing of these systems is mostly based on empirical experimentation and observations to ensure

that performance and response times are within acceptable parameters, but the worst-case can

still occur. Most garbage collectors and modern language implementations, are intended for these

soft real-time applications.

Hard real-time systems guarantee that all deadlines are met, so it is the worst-case behavior

that matters. These systems must be analytically shown to not violate timing constraints. In

other words, a formal analysis is used to demonstrate that the run-time of all operation, such

as load, stores and memory allocations, is bound by a small constant in the worst-case, so it is

impossible for the system to miss a deadline. Hard real-time systems cannot rely on empirical

experimentation, observations or average-case costs [123]. Also, these systems are often safety

critical and cannot fail due to issues like fragmentation. It is hard real-time systems that this

thesis discusses.

Software garbage collectors for hard real-time systems have been proposed in the literature.

But these collectors incur high run-time penalties, often utilizing over 50% of the processor’s

time [28], and large memory overheads [28, 50, 87, 92]. The real-time analysis formulations of

these collectors are often incomplete, like Schoeberl’s that is missing a timing model of their

collector (see Section 3.4.5) [148], or flawed, like the Metronome’s timing model that is based on

empirical observations instead of analytical worst-case bounds (see Section 3.4.2) [27]. In addition,

5

CHAPTER 1. INTRODUCTION

real-time analysis is inherently complex, so programmers require assistance from automated

tools, such as AbsInt’s aiT [2]. However, the literature rarely discusses these automated tools in

the context of automatic memory management and it is unclear how the experimental evaluation

of existing software real-time garbage collectors was performed. As a result, modern programming

language implementations using existing software garbage collectors for embedded systems are

unusable in practical hard real-time settings.

Nowadays, hard real-time systems use neither automatic nor explicit memory managers

due to the problems outlined previously. Instead, these systems are designed alongside domain-

specific memory managers to ensure that they meet strict performance, memory and real-time

constraints. But domain-specific memory managers have serious drawbacks as discussed in

Section 1.1.1. So there is a need to resolve the issues of garbage collection in order to enable the

productivity and trust benefits of modern languages in hard real-time embedded systems.

1.3 Thesis Questions and Contributions

The aim of this thesis is to enable the use of modern, garbage collected programming languages

in embedded systems. This will bring the well-known productivity and trust benefits of these

languages to the millions of embedded devices that are deployed annually. To achieve this, we

adapt existing techniques from hardware design, garbage collection and real-time analysis to

fulfil the unique requirements of embedded devices. Our main focus is to answer two research

questions:

• How can hardware garbage collectors be designed to deliver better run-time per-
formance and minimize memory overheads compared to existing collectors? Ex-

isting implementations of modern languages for embedded devices rely on well-understood

software garbage collectors. However, these collectors incur high overheads because the

algorithms are unsuitable to be implemented efficiently in conventional computers. We

investigate a shift in architecture, towards hardware garbage collection, to address these

problems. Little research on hardware garbage collection has considered the specific needs

of embedded systems.

• How can a hardware garbage collector’s timing properties be analyzed to guar-
antee that hard real-time requirements are met? A timing model of the collector

is required for the system to be provably hard real-time. This model is combined with

information extracted from the program to derive safe bounds on the use of resources such

as memory and processing time. Previous research has neglected to apply this rigorous

analysis to hardware garbage collectors. Instead, existing hard real-time collectors are

implemented in software and have impractical overheads for embedded devices.

6

1.3. THESIS QUESTIONS AND CONTRIBUTIONS

Our approach is to design an Integrated Hardware Garbage Collector (IHGC) that demon-

strates the shift in architecture from software to hardware garbage collection. Throughout this

thesis, we thoroughly investigate the impact of hardware garbage collection on the design of em-

bedded systems, evaluate the performance of our proposal and analyze its real-time capabilities.

Our main contributions are:

Design of the IHGC

1. A garbage collector fully implemented in hardware that runs continuously in the

background reclaiming memory independently from the processor.

2. A garbage collector implemented as a small state machine having the property that

each state transition is performed in a single memory cycle. The collector does not

normally pause the user’s program as it performs state transitions when the processor

is not using the memory for instruction execution.

3. A garbage collector optimized by implementing an indirection through handles using

a fast directory memory that contains metadata for allocated objects.

4. The use of a directory and hardware in the processor to efficiently mark pointers

loaded from memory and redirect memory accesses while compacting. This guarantees

program correctness in a system running a hardware collector concurrently with the

processor.

5. The design of a hardware garbage collector implementing a mark-compact algorithm.

The collector’s run-time can be estimated using static analysis methods, so it is suitable

for hard real-time applications.

6. An exact garbage collector implemented in hardware for weakly typed languages such

as C.

7. Detailed investigation and discussions about how design decisions in the architecture

of a hardware collector affect its timing properties.

Real-time analysis with the IHGC

8. A hard real-time analysis technique that estimates the amount of memory needed to

guarantee that the IHGC never pauses the user’s program, or determines that the

program cannot be run without pauses. The input to the analysis are parameters

extracted from the program and the worst-case run-time of a collection cycle for the

same program.

9. A timing model that estimates the worst-case run-time of a collection cycle in the

IHGC given a set of parameters extracted from a real-time program, like the amount

of memory allocated.

7

CHAPTER 1. INTRODUCTION

10. An automated software tool that uses static program analysis techniques adapted

from Worst-Case Execution Time (WCET) research to estimate the amount of allocated

memory and of memory cycles available to the IHGC from the compiled binary of a

given program. The tool enables using the IHGC in a practical real-time system.

The IHGC in an embedded system

11. An analysis of the impact of a hardware garbage collector, such as the IHGC, on RISC

Instruction Set Architectures (ISA) and proposals for changes to maximize the benefits

of the hardware collector at the architecture level.

12. A compiler specifically developed for an architecture with the IHGC and an assessment

on the changes and amount of effort required to port existing embedded software,

including existing modern languages implementations, to a system with the IHGC

using that compiler.

13. The microarchitecture of the IHGC alongside a pipelined embedded processor sup-

porting a RISC ISA. The design takes into account the features and constraints of a

modern fabrication technology suitable for embedded systems.

Evaluation of the IHGC

14. Estimation of the hardware costs and clock speed of the proposed IHGC microarchi-

tecture demonstrating that the design is within the parameters of modern embedded

systems.

15. Evaluation, through simulation, demonstrating that the IHGC offers similar or better

performance when running C programs in comparison to a system without the IHGC.

Also, the IHGC offers 1.5-7 times better performance when running programs written

in Python, a modern programming language, in comparison to a software garbage

collector.

16. Evaluation demonstrating that the IHGC introduces few program pauses when the

heap size is minimally increased, e.g. by a factor of 1.5, beyond the minimum op-

erational requirement. The experiments also shows how design parameters, like

the memory’s data bus width, can reduce pauses by up to 20% without significant

hardware overheads.

17. A demonstration of the IHGC and its real-time analysis in practice. The study also

shows how parameters, like the clock speed, affect the estimated memory requirements

to eliminate collection pauses.

8

1.4. THESIS OUTLINE

1.4 Thesis Outline

The remaining chapters in this thesis are organized in four parts. Background information is

presented in Part I along with a review of the literature on real-time and hardware garbage

collection. A novel hardware garbage collector, the IHGC, is proposed in Part II and its hard

real-time properties are analyzed. A simulation-based evaluation of the collector’s performance

and the real-time analysis are also presented. Part III describes and evaluates the architecture

and microarchitecture of an embedded system integrated with the proposed garbage collector.

Finally, Part IV identifies future work and concludes the thesis.

Part I: Background

• Chapter 2: Fundamentals of Garbage Collection

Background information on garbage collection theory is presented including basic

algorithms and techniques. Garbage collection design principles are also discussed.

• Chapter 3: Real-Time Garbage Collection

Software garbage collectors with an emphasis on hard real-time systems are described

and compared. Their performance and memory requirements are analyzed and their

suitability is assessed in the context of constrained embedded systems.

• Chapter 4: Hardware Garbage Collection

The literature on hardware garbage collection is discussed and knowledge gaps are

highlighted. Multiple proposals are analyzed and compared in the context of real-time

embedded systems.

Part II: Integrated Hardware Garbage Collection

• Chapter 5: Designing an Integrated Hardware Garbage Collector

The design of the Integrated Hardware Garbage Collector (IHGC) is presented at

a high-level. The most important tradeoffs and decisions are explained based on

information from the literature and experimental results.

• Chapter 6: Hard Real-Time Analysis with the IHGC

A static analysis technique is presented to guarantee that the IHGC never pauses a

hard real-time program. The analysis relies on a rigorous timing model of the IHGC

along with a software tool to automatically estimate the program’s execution time and

allocation rate.

• Chapter 7: Experimental Evaluation

Presents the methodology and results of empirically evaluating the IHGC alongside an

embedded processor. The experiments are performed in simulation using off-the-shelf

compilers and open-source benchmarks. Hard real-time programs are also analyzed

using the technique proposed in Chapter 6.

9

CHAPTER 1. INTRODUCTION

Part III: Architecting a Garbage Collected Embedded System

• Chapter 8: Garbage Collection in Instruction Set Design

Discusses the impact of the IHGC on ISA design. It explores how fundamental building

blocks, like procedure calling, of an architecture are affected by the garbage collector.

Changes to existing and novel ISAs are also proposed to leverage the hardware

collector’s benefits at the architecture level.

• Chapter 9: Microarchitecture of the IHGC

Describes the microarchitecture of the IHGC alongside a pipelined embedded processor.

The design is a realistic implementation of the IHGC based on the capabilities of a

modern fabrication technology. The timing and area requirements of the hypothetical

system are also estimated and discussed.

• Chapter 10: Evaluation of the IHGC Microarchitecture

Presents the methodology and results for a performance evaluation of the microarchi-

tecture proposed in Chapter 9. The experiments are conducted using a simulator that

models the previously presented hypothetical system.

Part IV: Conclusions

• Chapter 11: Conclusions and Future Work

The thesis contributions are outlined and conclusions are discussed. Future research

directions on hardware garbage collection and the IHGC are proposed.

1.5 Related Publications

Parts of the research presented in this thesis previously appeared in the following publications:

• A. AMAYA GARCÍA, D. MAY AND E. NUTTING, Garbage collection for edge computing, in

2020 IEEE/ACM Symposium on Edge Computing (SEC), 2020, pp. 319–319.

• A. AMAYA GARCÍA, D. MAY AND E. NUTTING, Integrated hardware garbage collection,

ACM Transactions on Embedded Computer Systems (TECS), 2021.

10

Part I

Background

11

C
H

A
P

T
E

R

2
FUNDAMENTALS OF GARBAGE COLLECTION

Automatic memory management is an integral part of most modern programming languages.

Python, C#, JavaScript and many other modern languages rely on automatic memory manage-

ment to increase productivity and trust. This is because the programmer is no longer burdened

with tedious and error-prone memory management tasks. Therefore, it is essential that garbage

collectors, the components responsible for automatic memory management, are reliable and

efficient to deliver the benefits of modern languages.

The task of a garbage collector is conceptually simple: to identify and reclaim unused memory.

But in practice, designing and implementing efficient collectors is difficult and countless schemes

have been proposed in the literature. They attempt to balance three conflicting goals:

Low run-time overheads: Garbage collection is only an administrative task, similar to process

scheduling. So the system should spend the least time possible in these operations and

maximize the time dedicated to actual application work.

Low memory overheads: All memory management algorithms (static or dynamic) incur mem-

ory overheads, for example, to store the collector’s internal data structures. These require-

ments must be minimized.

Short pauses: Garbage collectors often pause program execution, for example, if there is not

enough free memory to satisfy a pending allocation request. These pauses are hard to

predict, degrade performance and cause the program to appear unresponsive, so they must

be short in duration.

Garbage collectors often optimize one or two of these goals at the expense of the others. For

example, the collectors with the least run-time and memory overheads are executed uninter-

ruptedly when the free memory is exhausted, but in this case the user’s program is paused for a

13

CHAPTER 2. FUNDAMENTALS OF GARBAGE COLLECTION

long time. Alternatively, garbage collection can be performed concurrently with the execution of

the user’s program to reduce the duration of pauses. However, these schemes often have high

performance drawbacks due to context switching and synchronization overheads. In this chapter,

we introduce basic garbage collection theory and explain how the collector’s design attempts to

balance the three conflicting goals.

2.1 Basic Garbage Collection Algorithms

Identifying the exact set of unused objects is a difficult task. Instead, garbage collectors are

conservative in their definition of unused: an object is unused if the program cannot reach it. The

concept of reachability associates the program (or mutator in garbage collection terminology)

with a root set of pointers (or references). An object can be reached if the program can access it by

following a chain of pointers starting from the root set. Reachable objects (also known as live)

must be retained by the collector while unreachable (or dead) objects are considered garbage and

are reclaimed.

There are two basic approaches to garbage collection: tracing and reference counting. These

are explained briefly and four basic algorithms are compared.

2.1.1 Tracing

Tracing is a technique to indirectly identify the garbage objects in memory. Tracing algorithms

recursively mark the live objects starting from a root set of pointers, such as the processor’s

registers and the function call stack. The unreachable objects remain unmarked at the end of

tracing and the collector can reclaim them.

Tracing simply identifies live objects. It must be complemented with a further technique

capable of reclaiming the unused memory to construct a garbage collector. In their basic form,

these collectors are run when the free memory is exhausted. The user’s program is paused while

the collector performs a full cycle, i.e. traces the memory once and reclaims all garbage objects.

We discuss three basic tracing collectors: mark-sweep, mark-compact and copying.

2.1.1.1 Mark-Sweep and Mark-Compact

Mark-sweep collectors were initially proposed by McCarthy for the LISP programming

language [109]. These algorithms operate in two stages: mark and sweep. The marking stage

traces the live objects in memory as shown in Listing 2.1. The collector examines every root

pointer in the root set. Each object found during tracing is marked and then scanned in a search

for pointers to objects not yet discovered. This operation has a memory overhead because the

references to marked but not scanned objects must be recorded. Listing 2.1 uses the function call

stack for this purpose as it is recursive, but implementations using other data structures, such as

14

2.1. BASIC GARBAGE COLLECTION ALGORITHMS

1 procedure trace():
2 foreach root in rootSet:
3 markAndScanObject(root)
4

5 procedure markAndScanObject(objref):
6 if isMarked(objref):
7 skip
8 else:
9 foreach pointer in object referenced by objref:

10 setMarked(pointer)
11 markAndScanObject(pointer)

Listing 2.1: Recursive implementation of the basic tracing algorithm.

linked lists, are also possible. Marking terminates when all the roots have been scanned and all

reachable objects are marked and scanned.

During the sweeping stage, the collector scans every object in memory: unmarked objects

are reclaimed while marked objects are retained. The mark flags are also cleared in preparation

for the next mark-sweep cycle. However, the details of the sweeping stage change substantially

depending on the collector’s approach to tackle fragmentation. In the simplest case, the collector

only labels memory from dead objects as ‘free’. These collectors do not address the fragmentation

problem, so memory allocation is often complex to implement efficiently. However, the collector

itself is simple and has low overheads.

Systems that rely on basic mark-sweep collectors often mitigate fragmentation by only allo-

cating objects within fixed, equally-sized memory blocks. But this causes internal fragmentation

when the allocated object is smaller than the block size; the excess memory in the block will not

be used and is wasted. For example, the memory space could be split into 32 byte blocks and

every object is allocated using one or more such blocks. So an 8 byte object would be allocated

using a 32 byte memory block; the remaining 32−8= 24 bytes in the block remain unused. In

addition, allocations larger than the block size must be split across potentially discontiguous

memory chunks. For instance, an array allocation of 1 KB needs to be split across multiple 32

byte blocks. Accesses to the nth element in the array are no longer constant-time because the

data structure linking the object’s memory blocks must be traversed until the requested location

is found. These problems cause overheads and increase software complexity.

Mark-compact is a collection algorithm that prevents fragmentation. Instead of sweeping,

these collectors copy the live objects towards one end of the memory so that the free space is

clustered at the opposite end; the marking stage remains as described before. The LISP 2 garbage

collector is an example of mark-compact [88]. It performs three passes over the memory during

the compact stage as shown in Listing 2.2. The collector calculates the new locations of the live

objects during the first pass. Then, the second pass updates all pointers in the live objects to

reference the new addresses of the objects. Finally, each live object is copied towards one end of

the address space to compact the memory in the third pass.

15

CHAPTER 2. FUNDAMENTALS OF GARBAGE COLLECTION

1 procedure compact():
2 calculateNewLocations()
3 updateReferences()
4 copyObjects()
5

6 procedure calculateNewLocations():
7 scan, free ← MemStart, MemStart
8 while scan < MemEnd:
9 if isMarked(scan):

10 setNewLocation(scan, free)
11 free ← free + getObjectSize(scan)
12 scan ← scan + getObjectSize(scan)
13

14 procedure updateReferences():
15 foreach root in rootSet:
16 root ← getNewLocation(root)
17

18 scan ← MemStart
19 while scan < MemEnd:
20 if isMarked(scan):
21 foreach pointer in object referenced by scan:
22 pointer ← getNewLocation(scan)
23 scan ← scan + getObjectSize(scan)
24

25 procedure copyObjects():
26 scan ← MemStart
27 while scan < MemEnd:
28 if isMarked(scan):
29 copy(getNewLocation(scan), scan)
30 unsetMarked(getNewLocation(scan))
31 scan ← scan + getObjectSize(scan)

Listing 2.2: Compact stage of the LISP 2 garbage collector taken from [88].

Mark-compact collectors have higher performance penalties than mark-sweep. This is because

mark-compact entails costly memory copying and the collector must update pointers to copied

objects to reflect their new memory location, otherwise the program will not operate correctly.

An approach to mitigate this problem is using an indirection through handles [89]. The idea is

that pointers reference handles which are memory locations containing the object’s base address;

pointers no longer refer to absolute memory addresses within an object. When an object is copied

while compacting, the collector only has to update the address in the handle as opposed to every

pointer referencing it. Therefore, the performance impact of the compact stage is mitigated

although memory accesses are potentially slower because every load and store must read the

address at the handle before accessing the object’s contents.

2.1.1.2 Copying

Copying algorithms address the performance drawbacks of mark-sweep and mark-compact

collectors at the expense of higher memory overheads. Copying algorithms only require a single

16

2.1. BASIC GARBAGE COLLECTION ALGORITHMS

A B C
R

from-space

to-space

(a) The semispaces switch roles at the start of the
collection cycle.

A B C
R

from-space

to-space
A’

(b) Every object directly reachable from the roots is
copied into to-space.

A B C
R

from-space

to-space
A’ B’

Scan

(c) The first object in to-space (A′) is scanned in search
for pointers to objects not yet discovered. A to-space
copy of every object discovered is made and the pointer
to that object is updated.

A B C
R

from-space

to-space
A’ B’ C’

Scan

(d) Every remaining object in to-space is scanned
in search for pointers. Newly discovered objects are
copied and pointers to already copied objects are up-
dated to reference the to-space copy.

R

to-space

from-space
A’ B’ C’

(e) The collection cycle terminates when every reach-
able object has been copied and all pointers reference
a to-space location.

Figure 2.1: An example of Cheney’s copying collector in operation.

pass through the memory instead of multiple ones. They split the memory space into two

semispaces of equal size labeled from-space and to-space. The program allocates objects and

operates in to-space. A collection cycle starts when there is not enough free memory in to-space

to satisfy an allocation: a flip is performed by switching the roles of the semispaces. Then the

memory is traced and live objects are evacuated (copied) from from-space to to-space. Finally, the

data in from-space is simply discarded.

Cheney’s algorithm is an example of a copying garbage collector [49]. Its operation is illus-

trated in Figure 2.1 on a system that has three live objects. The collector first performs a flip

and starts tracing. The objects directly reachable from the root R are copied into to-space as

shown in Figure 2.1(b). Also, a forwarding reference to the to-space copy of the object is stored in

the from-space copy. The root pointers are updated to reference the to-space copy. The collector

then starts scanning each to-space object copy as shown in Figure 2.1(c). If a pointer to an object

17

CHAPTER 2. FUNDAMENTALS OF GARBAGE COLLECTION

R

Ref. Count:2 Ref. Count:1 Ref. Count:1

(a) Reference counted doubly-linked list. The head element is referenced from
a root R.

Ref. Count:1 Ref. Count:1 Ref. Count:1

(b) Reference counted doubly-linked list that is unreachable from the roots.

Figure 2.2: Doubly-linked lists cannot be reclaimed using reference counting because the pointers
in the data structure form a cycle.

that has not been copied is found, then the newly discovered object is copied into to-space. For

example, a copy B′ of object B was created in Figure 2.1(c) because B is reachable from the object

being scanned A′. Additionally, the collector updates the pointers found while scanning to-space

object copies. The process is repeated until all reachable objects are copied and their pointers

updated as illustrated in Figure 2.1(d). Finally, the from-space copies are simply discarded and

the roles of the semi-spaces are switched as shown in Figure 2.1(e).

Copying collectors effectively double the system’s memory requirements because only one

semispace is used at a time. Also, copying collectors do not maintain the relative position of objects

in memory which can be detrimental in some systems. For example, a reachable object A at a

lower address than another object B before the collection cycle could be found at a higher memory

address relative to B at the end of the cycle. But compared to mark-compact, the performance

overheads of copying collectors are smaller. This is because the run-time of copying collectors

is proportional to the size of the live data while the run-time of mark-compact collectors is

proportional to the memory size.

2.1.2 Reference Counting

Reference counting is a direct garbage collection method proposed by Collins [54]. It identifies

dead objects in memory as opposed to the live objects found by tracing algorithms. Reference

counting associates a count with every allocated object. The count records the number of pointers

that the program holds to that object. Garbage collection is simple as objects are reclaimed when

their count reaches 0.

The advantage of reference counting is that objects can be reclaimed as soon as they become

unreachable. In contrast, a full collection cycle must be completed for tracing algorithms to

18

2.1. BASIC GARBAGE COLLECTION ALGORITHMS

Mark-Sweep Mark-Compact Copying Reference
Counting

Defragment No Yes Yes No
Collects cycles Yes Yes Yes No

Memory overhead Medium Medium High Low
Starting point Roots Roots Roots Garbage objects

Objects traversed Live Live Live Garbage
Collection style Batch Batch Batch Incremental

Reclamation delay Yes Yes Yes Data structure with cycles

Table 2.1: Comparison of four basic garbage collection algorithms.

reclaim garbage objects. However, reference counting incurs memory overheads as each object

must have space for the counts. There are also run-time overheads as potentially every memory

access operation requires one or more counter updates. Admittedly, there are techniques, such as

deferred reference counting, to mitigate these problems [38, 56].

Another important disadvantage of reference counting is its inability to reclaim objects form-

ing data structures with cycles. For example, the doubly-linked list in Figure 2.2(a) cannot be

reclaimed because its head element is referenced by a root. Eliminating the root pointer only

decreases the head element’s count by 1. The resulting garbage data structure in Figure 2.2(b)

cannot be reclaimed purely based on the count. Therefore, reference counting is usually sup-

plemented by another garbage collector capable of reclaiming data structures forming cycles,

like mark-sweep [46]. An alternative solution is to introduce weak pointers; pointers that do

not increase the counts of the objects they reference [82]. However, weak pointers require the

programmer to explicitly manage the lifetime of pointers which is prone to errors.

Reference counting does not compact the memory, so fragmentation may occur; more ad-

vanced reference counting algorithms tackle this problem [158]. In addition, reference counting

introduces unexpected pauses during program execution. These pauses occur when reclaiming

an object triggers a long chain of counter update operations and deallocations, also known as a

cascade, that take a long time to process. For example, eliminating the last pointer to the root of

a tree data structure will cause every tree node to be reclaimed. Once again, there is research

that attempts to mitigate these problems [185].

2.1.3 Comparing Basic Garbage Collection Algorithms

The main features of the basic garbage collection algorithms are compared in Table 2.1. Mark-

compact and copying are the only collectors that directly tackle fragmentation because they

compact the memory. Allocations alongside these collectors are simple and have predictable

run-times as the free space is clustered at one end of the memory as shown in Figure 2.3(a).

Therefore, an allocation only involves moving a pointer by the requested amount of storage space.

19

CHAPTER 2. FUNDAMENTALS OF GARBAGE COLLECTION

(a) Compacted memory.

(b) Fragmented memory.

Figure 2.3: Fragmentation segments the free memory space. Allocating is complex, time-
consuming and prone to failure when the memory is fragmented. In contrast, compaction clusters
the free and live memory, so allocations are simple to implement.

In contrast, algorithms that do not compact the memory require complex allocation routines that

are prone to failure. This is because the free space is segmented by blocks of allocated memory as

shown in Figure 2.3(b), so the algorithm must operate lists of free memory blocks until one with

enough space to satisfy the allocation request is found. Also, the run-time of allocate operations

increases as fragmentation occurs. In the worst-case, suitable space cannot be found to fulfil

an allocation and the system fails. These issues degrade reliability and are unacceptable in

embedded devices that are often expected to run for a long time in inaccessible locations.

Reference counting generally has the lowest memory overheads as it only requires additional

storage for the counts. Previous research showed that very few bits are needed to store these

counts [156]. Mark-sweep and mark-compact have higher memory overheads because they need

space for the processing stack and mark flags. In contrast, copying collectors have the highest

memory overheads as the usable memory space for dynamic allocations is effectively halved.

Tracing algorithms always start garbage collection from a root set of pointers. They identify

the live objects and then reclaim those that are dead. This enables them to reliably reclaim any

kind of data structure including those forming cycles. However, tracing garbage collectors must

scan all reachable objects before reclaiming the garbage in batch. So there is a delay from the

time that an object becomes unreachable until it is reclaimed. In contrast, reference counting

operates incrementally alongside the program. For example, a count for an object is incremented

as a pointer is written to a memory location. Similarly, the objects are reclaimed incrementally

when their counts drop to 0, so the collector only traverses unreachable objects. But this is also a

weakness as data structures forming cycles cannot be reclaimed without using an alternative

collector.

2.2 Generational Garbage Collection

Researchers observed that the majority of objects become garbage shortly after they are allo-

cated [101, 178]. These objects that die young are later reclaimed by the collector. But objects

20

2.3. INCREMENTAL AND CONCURRENT GARBAGE COLLECTION

that are retained longer are repeatedly and unnecessarily processed by the garbage collector.

This is particularly problematic with copying algorithms that must evacuate every live object

during a collection cycle.

Generational garbage collectors segregate objects by age in an attempt to reduce run-time

overheads [13, 101, 178]. They partition the memory space into two or more generations that

are garbage collected separately. Objects are allocated into a young (nursery) generation and

are promoted (tenured) to other generations as they become older. Nurseries have higher object

mortality rates, so they are garbage collected more often than generations with older objects. But

performance is improved because it takes less time to collect a nursery than the full memory

space. The root set of pointers for a nursery collection includes the regular roots as well as

pointers from older to younger generations. This is because young objects that are referenced

from outside the nursery must be retained, but objects from older generations are not scanned

when the nurseries are collected.

Parameters, such as when to collect, generation sizes, among others, are normally all config-

urable by the user. For example, the tenuring parameter can be set to the number of collection

cycles that the object has survived. In addition, the different generations may be collected using

different garbage collection algorithms.

Generational garbage collectors are widely used due to their performance benefits. But they

are complex to design and configure correctly. Compared to the basic algorithms, they have

higher memory overheads due to the need to record references from older to younger generations.

Generational collectors improve the run-time in the average-case only, so they are not used in

real-time systems where the worst-case performance is critical [46, 79]. For these reasons, we do

not consider generational garbage collection further in this thesis.

2.3 Incremental and Concurrent Garbage Collection

The basic algorithms discussed in Section 2.1 assume that the program is paused for the full

duration of a collection cycle. These collectors effectively stop-the-world and are only invoked

when the program has exhausted the free memory space. Therefore, stop-the-world collectors can

be used in systems where pauses are not important. But they are unsuitable for interactive and

real-time applications.

Incremental algorithms attempt to reduce the duration of garbage collection pauses. These

collectors divide their operation into small units of work called increments that are executed

interleaved with the user’s program as shown in Figure 2.4(a). The program is paused for the

duration of each increment, even in multi-core systems as shown in Figure 2.4(b). Ideally, the

work increments are sufficiently small so that the pauses are very short.

Concurrent garbage collectors further eliminate pauses by allowing the user’s program to

execute in parallel with the collector. For example, Figure 2.4(c) shows a system where a core is

21

CHAPTER 2. FUNDAMENTALS OF GARBAGE COLLECTION

Time

(a) Incremental single-core garbage collector.

(b) Incremental multi-core garbage collector.

(c) Mostly-concurrent garbage collector.

(d) On-the-fly incremental garbage collector.

Figure 2.4: Incremental and concurrent garbage collection. Each bar represents the execution in
a single core. White regions are the execution of the user’s program threads and shaded regions
correspond to the collector’s execution. This illustration was partially extracted from [88].

fully reserved to execute a mostly-concurrent collector. A short pause is only introduced at the

beginning of the collection cycle to perform some synchronization. In the literature, concurrent

collectors that do not introduce this synchronization pause, as shown in Figure 2.4(d), are called

on-the-fly [88]. Concurrent collectors are mainly intended for multi-core systems where it is

possible to take advantage of parallelism. However, embedded systems are normally single-core,

so it is common to use incremental collectors for these devices instead of concurrent ones.

Incremental and concurrent garbage collectors make real-time operation possible because

pauses are reduced significantly when compared to stop-the-world collectors. However, the user’s

program is no longer paused for the full duration of the collection cycle, so race conditions can

occur. In Section 2.4 we will discuss techniques to prevent these race conditions and maintain

correctness when using incremental or concurrent collectors.

2.4 Correctness of Incremental and Concurrent Collectors

The user’s program is not paused while incremental and concurrent collectors run, so it is possible

that reachable objects mistakenly remain unmarked at the end of the collection cycle. The tri-color

abstraction proposed by Dijkstra et al is used to reason about these issues [57, 58]. Consider the

22

2.4. CORRECTNESS OF INCREMENTAL AND CONCURRENT COLLECTORS

A B C

R

(a) A is marked (shaded gray) as it is reachable from root R.

A B C

R

(b) A is fully processed (shaded black) and B is marked (shaded gray).

A B C

R

(c) The user’s program stores a pointer to unmarked (white) object C in
black object A and deletes the pointer from gray object B. C will remain
unmarked at the end of tracing.

Figure 2.5: Sequence of events that results in reachable objects remaining unmarked after tracing
when an incremental collector runs concurrently with the user’s program.

objects A, B and C with the pointers shown in Figure 2.5; all objects are white at the beginning of

the collection cycle since they are unmarked. A is marked first and shaded gray in Figure 2.5(a)

because it is reachable from root R. The collector then scans A and finds a pointer to B. A is

shaded black in Figure 2.5(b) because it has been both marked and scanned while B is shaded

gray as it is marked but not scanned yet. However, the user’s program concurrently stores a

pointer to C in A and deletes the pointer to C from B before B is fully processed, i.e. shaded black,

as illustrated in Figure 2.5(c). C will not be marked at the end of tracing because A will not be

scanned again. Therefore, C will be incorrectly reclaimed potentially causing a failure.

Garbage collectors prevent live objects from being reclaimed incorrectly by enforcing either

one of the following two invariants [88]:

Strong tri-color invariant: Black objects do not contain pointers to white objects.

Weak tri-color invariant: White objects referenced from black objects are also reachable from

gray objects either directly or indirectly through a chain of white objects.

Garbage collection read and write barriers are used to prevent the correctness problems

described above by preserving either of the invariants when using incremental or concurrent

algorithms. The barriers perform some action, like marking an object, as pointers are inserted or

deleted. Garbage collection algorithms, along with their barrier techniques, can be classified in

two groups according to how the roots are colored: black and gray mutator.

23

CHAPTER 2. FUNDAMENTALS OF GARBAGE COLLECTION

2.4.1 Black Mutator

The user program’s root set may only contains pointers to black objects if the garbage collector

operates with a black mutator. The following barriers are used for these collectors:

Read barrier: The idea was originally proposed by Baker for an incremental copying collector

that maintains the strong tri-color invariant [32]. Baker’s algorithm performs a flip and

scans the roots within a single work increment. Then the collector performs a small amount

of work during each subsequent increment until all reachable objects are shaded black.

However, the collector must ensure that black objects never contain pointers that reference

white objects, otherwise the situation illustrated in Figure 2.5 could occur. The read barrier

enforces this invariant by processing for marking, i.e. shading gray, every pointer that the

program loads into the roots.

Write (deletion) barrier: This barrier processes for marking a pointer that is being deleted

from an object while storing to memory. In other words, the write barrier marks the object

referenced from the location that is about to be overwritten. This ensures that white objects

are never referenced from black objects only, so the weak tri-color invariant is maintained.

Collectors using write deletion barriers, like Yuasa’s [195], are also known as snapshot-at-

the-beginning because they retain all objects that are reachable at the start of the collection

cycle.

2.4.2 Gray Mutator

A garbage collection algorithm is said to use a gray mutator if the program’s root set may refer to

objects that are black, gray or white according to the tri-color abstraction. Dijkstra et al proposed

a garbage collector for a gray mutator that enforces the strong invariant using a write (insertion)

barrier [58]. The write barrier marks the pointers being written (or inserted) into memory to

ensure that black objects never contain pointers to white ones. Steele proposed another write

(insertion) barrier that changes the color of the object where a pointer is written from black to

gray [169]. So the collector scans the formerly black, now gray, object once again to ensure that

reachable white objects are marked. However, garbage collectors operating with gray mutators

allow the program to load pointers to white objects into the roots after root scanning. So compared

to black mutator algorithms, gray mutator ones have a more complex termination condition

because the roots must be scanned multiple times to ensure that all reachable objects are shaded

black.

2.4.3 Incremental and Concurrent Compacting

Another problem with incremental and concurrent collectors occurs when the program accesses

an object that is currently being compacted. The collector must ensure that the correct memory

24

2.5. CHARACTERIZING GARBAGE COLLECTION PAUSES

location is accessed to guarantee the program’s correct behavior. Read and write barriers imple-

menting address forwarding operations can be used to address the problem. For example, every

object in Brooks’ collector contains a pointer to the correct copy of the object that the program

must access [42]. Similarly, Steele’s collector contains flags to indicate whether an object has

been relocated [169]. But most of these incremental collectors rely on each object being copied

atomically before the program can access it, so delays are introduced.

2.4.4 The Cost of Read and Write Barriers

Incremental and concurrent garbage collectors are an absolute necessity in soft and hard real-

time systems. But read and write barriers incur high performance overheads, so incremental

collectors are less efficient than their stop-the-world counterparts. According to Zorn, the cost

of software-implemented read and write barriers accounts for as much as 20% and 8% of the

program’s run-time respectively [197]. However, more recent studies have shown that the impact

of collection barriers has progressively decreased in modern large-scale systems [37, 194]. Read

and write barriers can be implemented in several ways:

• Compiling additional instructions into the program’s code to check for read and write

barrier conditions. This technique can significantly increase code size.

• Using the virtual memory system to protect pages. Appel et al pioneered this technique to

efficiently enforce a version of Baker’s read barrier [14]. However, this can be costly as it

constantly forces the processor to switch context. It is also unsuitable for embedded systems

that do not have hardware support for virtual memory.

• Introduce special-purpose hardware to accelerate read and write barriers. We discuss this

technique in Chapter 3.

Read and write barriers are essential to reduce the duration of individual pauses, yet they

incur significant performance penalties. The design of the barrier must carefully consider the

needs and hardware resources in the system. For example, read and write barriers using virtual

memory are unsuitable for embedded systems that lack these facilities.

2.5 Characterizing Garbage Collection Pauses

As discussed in Section 1.2, real-time systems are expected to perform tasks correctly and deliver

results on time. So it is important that garbage collection pauses, due to operations like read

and write barriers or work increments, do not delay the user’s program such that deadlines are

missed. However, traditional statistical metrics, like maximum or average duration of pauses,

are insufficient to characterize collection algorithms. For example, consider a real-time system

performing a task that takes 15 ms in every 30 ms period. It is unclear whether a garbage collector

25

CHAPTER 2. FUNDAMENTALS OF GARBAGE COLLECTION

10 100 1000 10000
0

20

40

60

80

100

Time (ms)

M
M

U
(%

)

Figure 2.6: Minimum Mutator Utilization (MMU) plots graphically characterize the distribution
and duration of garbage collection pauses.

that pauses for a maximum of 10 ms is suitable for the real-time system because it is not know

how many of these pauses could occur in a 30 ms period. Therefore, measures to characterize the

distribution of pauses are needed [88].

Cheng and Blelloch invented the Minimum Mutator Utilization (MMU), a useful metric

commonly used to characterize the distribution and duration of garbage collection pauses [50].

MMU defines the utilization as the fraction of time that the user’s program executes in a given

time window. A MMU plot is a graphical representation of the minimum utilization for many time

windows. For example, the MMU in Figure 2.6 shows that 10% of the processor’s time is available

for program execution in any 10 ms window. The plot also shows the total fraction of time used

for garbage collection at the y-intercept and the maximum pause time at the x-intercept.

MMU is a valuable measure to characterize pauses in soft real-time systems. But it does

not guarantee that a garbage collector is hard real-time because the MMU is an empirical

measurement. There could be corner cases resulting in lower minimum utilization that were not

captured by the run used to produce the MMU. As we will discuss in Chapter 3 and Chapter 6,

hard real-time garbage collectors must be shown to not violate timing requirements in the

absolute worst-case.

2.6 Identifying Pointers

At the heart of any garbage collector is the ability to identify unused objects. A safe assumption

is that an object is unused if the program does not hold a pointer to it because the program

could never (legally) access that object again. But this raises the question of how collectors can

distinguish pointers from data values when scanning the program’s memory. A solution is to

26

2.6. IDENTIFYING POINTERS

assume that a pointer is any word in memory or the registers whose value corresponds to the

address of an allocated object in memory. The advantage of these conservative collectors is that

they do not require type information to operate correctly, so they can be integrated with weakly

typed languages like C [198].

Conservative collectors have the disadvantage that data values occasionally alias pointers,

so garbage objects would be retained longer than needed. Thus, it is difficult to analyze such a

collector’s real-time behavior because the amount of time that garbage objects will remain in

memory is unknown. In fact, conservative collectors can increase heap memory requirements by

0.01-6% [157], or as much as 30-150% [198]. These collectors also incur performance overheads

because they implement heuristics that attempt to minimize pointer aliasing. For example,

a collector could check whether a word contains a value within the valid range of memory

addresses supported by the machine, so it is potentially a pointer, or outside that range, so it

has regular data. Implementing such heuristics typically requires executing the equivalent of

about 30 RISC instructions for every word examined during tracing [88]. Another critical problem

is that conservative collectors do not work well with compaction because the collector cannot

reliably distinguish whether a word contains a pointer that needs to be updated as it references

a relocated object, or an integer that must remain unchanged.

The alternative to conservative collectors is using type information to unequivocally identify

the set of live objects. These collectors are also called exact and we discuss four techniques to

implementing them: bit stealing, extra tag bits, partitioning and type maps. Bit stealing is a

tagging technique that uses one or more bits in a word to indicate whether the value is a pointer

or simply data [88]. The most or least significant bit of every word is normally repurposed as a

tag. But it has the disadvantage that the range of integer values that the word can represent

is reduced. For example, the maximum unsigned integer is 231 −1 instead of 232 −1 on a 32-bit

processor if a bit is used as a tag. This causes compatibility problems with some programming

languages, such as C and C++, because standard integer types are not easily supported. In

addition, most Instruction Set Architectures (ISA) are not designed to disregard the stolen tag

bit when executing instructions, like add and subtract, so extra code is needed to deal with these

problems at the expense of performance.

The compatibility and performance problems caused by bit stealing can be tackled by adding

extra tag bits to every word using hardware. For example, a word can be thought of as having

33 bits: 32 for data and 1 for tag. Instructions operate on the natural word size once again

at the cost of memory overheads for the tags. The extent of these overheads depends on how

the tag bits are implemented in hardware [85]. The tags can be stored as vectors in dedicated

memory components, but this increases hardware requirements. Another approach is to extend

the word size of the physical memory component. This is difficult to achieve in large machines,

like desktops and servers, because off-the-shelf external memories are mostly manufactured in

standard bit widths. However, extending the word size is not a problem in embedded devices that

27

CHAPTER 2. FUNDAMENTALS OF GARBAGE COLLECTION

Technique Compatibility Performance
Overheads

Memory
Overheads Exact

Conservative High Medium Medium No
Bit stealing Low High Low Yes
Extra tag bit High Low Medium Yes
Partitioning Low Low Low Yes
Type map Low High High Yes

Table 2.2: Comparison of techniques to identify pointers in memory.

mostly have internal memories. In this case, the memory overheads for a 1-bit tag are about 3%

in a 32-bit machine.

Another approach to exact garbage collection is to use the type information from the objects.

It is possible to identify the type of every member of an object in strongly typed languages, such

as Java and C#, but not in weakly typed languages because values can be cast to arbitrary types.

The type information can be supplied to the collector in two ways. Pointers and data can be

segregated into partitions within every object, so it is easy to identify the values that need to be

scanned during marking [104]. This idea has low performance and memory overheads, but it is

difficult to implement alongside languages that support polymorphism. The type information can

also be supplied as a type map that indicates the layout of each object in memory. However, type

maps incur memory and performance overheads as they require storage space and the collector

must execute instructions to decode and use them.

A comparison of the collection approaches to distinguishing pointers from data is shown in

Table 2.2. The memory requirements of conservative collectors are difficult to analyze statically,

so they are unsuitable for real-time systems. Bit stealing has low memory overheads that are

beneficial for embedded systems. However, it is difficult to support standard integer types, so

bit stealing is incompatible with much existing software. Partitioning and type maps cannot be

used with weakly typed languages. In addition, partitioning limits flexibility when the garbage

collector is implemented in hardware because the object layout must be hard-coded in the runtime

system. Conversely, the more flexible type maps are difficult to use by hardware collectors and

incur high memory overheads. We conclude that adding extra tag bits is the best choice for

embedded real-time systems if the hardware overheads are low.

2.7 Summary

In this chapter we described the three conflicting goals of garbage collection. We explained four

basic garbage collection algorithms: reference counting, mark-sweep, mark-compact and copying.

We also discussed the advantages and disadvantages of these algorithms. Reference counting

cannot reclaim data structures forming cycles and introduces pauses that are unsuitable for

28

2.7. SUMMARY

real-time programs. Copying collectors have very high memory overheads, but their performance

is better compared to mark-compact and mark-sweep collectors. In addition, only incremental or

concurrent garbage collectors are suitable for real-time systems.

We considered how generational garbage collectors can be used to improve performance. But

we concluded that generational algorithms are unsuitable for real-time systems because they

optimize the average-case instead of the worst-case run-time. We explored various strategies for

distinguishing pointers from data. It was found that only exact hardware collectors implemented

using extra tag bits are suitable for real-time systems as their memory space requirements can

be analyzed statically.

We conclude that incremental and exact collectors are essential for real-time embedded

systems. In addition, embedded devices often have limited resources and lack support for fea-

tures, like virtual memory, so the design of the garbage collector must carefully consider the

implementation challenges in those systems.

29

C
H

A
P

T
E

R

3
REAL-TIME GARBAGE COLLECTION

Real-time requirements are a common denominator in many embedded systems. A 2017 survey

by AspenCore found that about 60% of embedded projects require real-time capabilities [23].

This is because embedded applications usually entail devices communicating with each other

and interacting with the physical environment; both tasks are subject to timing constraints.

For example, a received network packet must be acknowledged before the connection times out.

Similarly, a display must refresh sufficiently fast in response to stimuli to provide a good user

experience. But garbage collectors introduce unpredictable pauses that cause devices to not meet

their timing requirements, so modern languages are rarely used to develop real-time embedded

systems.

Explicit memory allocators are also unsuitable for real-time systems [136]. These allocators

have analytical worst-case run-times that are far detached from the algorithm’s average-case,

so the system may unexpectedly miss deadlines. In addition, explicit memory allocators are

error-prone and often unreliable due to fragmentation. Without alternatives, programmers are

forced to either write domain-specific, real-time dynamic memory allocators or use static memory.

For example, the open-source networking library lwIP includes a custom allocator to manage

storage for packet data [59]. However, domain-specific allocators cause safety and reliability

problems as they are rarely tested and verified sufficiently. Domain-specific allocators and static

memory management also waste space, are often inefficient and increase software complexity.

This is because domain-specific allocators often place objects within fixed-size memory blocks and

static memory management reserves the worst-case storage requirements at compile-time.

Previous research proposed specialized garbage collectors to tackle the memory management

problem in real-time embedded systems. In this chapter we explain and compare notable works

from the literature.

31

CHAPTER 3. REAL-TIME GARBAGE COLLECTION

3.1 System Requirements and Garbage Collectors

Systems have different demands depending on their target application. These demands are

passed on to the memory manager to meet specific performance, space and pause requirements.

Therefore, garbage collectors have a wide design space as different techniques are appropriate

depending on the system requirements.

Some systems must complete a task in the shortest time possible. Pauses are not important

because there is little or no interactions with users or the physical environment. Stop-the-world

garbage collectors are ideal choices for these batch processing systems as the overheads from

read and write barriers are eliminated.

Long collection pauses are not desirable in soft real-time systems. Their requirements are to

minimize collection pauses in the average-case, but the occasional long pause can be tolerated.

Examples include mobile devices and information displays where failure to meet timing deadlines

does not have serious consequences. The incremental collectors described in Section 2.3 are

an optimal choice for these systems because the work increments can be spread out so that

long pauses are avoided. In addition, generational collection techniques are used to reduce the

performance cost of memory management as the complete memory space does not need to be

repeatedly processed. There are many proposals for soft real-time collectors in the literature. In

practice, most implementations of modern languages rely on soft real-time collectors, such as the

Java HotSpot Virtual Machine and CPython [129, 143].

Predictability is of paramount importance in hard real-time systems. For example, a medical

device, like a cardiac pacemaker, missing a timing deadline may result in the death of a patient.

Hard real-time systems must be shown to not violate timing requirements because of garbage

collection. So the run-time of any operation, such as loads, stores and memory allocations, must

be bound by a small constant in the worst-case. These systems cannot rely on average or expected-

case costs [123]. Also, hard real-time systems are often safety-critical and cannot suffer from

unreliable behavior due to memory issues like fragmentation. Therefore, some form of compaction

is required unless objects are allocated within fixed-size memory blocks only [55].

Existing hard real-time garbage collectors are incremental or concurrent and are implemented

in software. However, unexpected collection pauses are not acceptable, so hard real-time systems

are very sensitive to how the collection work is scheduled alongside the user’s program [79]. In

the remainder of this chapter, we survey the literature on software-implemented, hard real-time

garbage collection and explore the two main scheduling approaches: work-based and time-based.

3.2 Work-Based Real-Time Garbage Collection

Work-based garbage collectors introduce a collection work ‘tax’ in connection with memory

allocations. These collectors are incremental to ensure that the program’s threads perform a

variable amount of collection work depending how much memory they allocate. Also, the amount

32

3.2. WORK-BASED REAL-TIME GARBAGE COLLECTION

of tax is generally configurable; for example, it may depend on the priority of the thread requesting

the allocation.

Showing that work-based collectors do not violate timing constraints is relatively simple as

the collection and allocation rate are strongly related. The system’s allocation rate is extracted

from the real-time program by using static analysis methods. The collection rate is estimated

using a timing model of the collector; the model estimates the worst-case run-time of collection

operations, like the duration of a mark-sweep cycle in a tracing collector, for a given program.

From this and the configurable tax parameter, the amount of collection work performed by

a thread when allocating is calculated to guarantee that the user’s program is not paused

unexpectedly. Therefore, all operations are bound by a constant depending on the configurable

tax parameter.

3.2.1 Baker’s Garbage Collector for LISP

Baker pioneered the work-based technique with his incremental copying collector for LISP. The

collector uses a read barrier to ensure that the program only sees to-space references after a

flip [32]. This prevents from-space references from being inserted into to-space. The read barrier

checks every pointer loaded from memory. No action is taken if the pointer references a to-space

location, although the check requires executing a test and a branch instead of a simple load.

Loaded pointers to from-space locations are updated to reference to-space: a copy of the object is

created in to-space, if it does not exist already, and the pointer is updated to reference the new

copy. As a result, loads from memory may result in costly copying operations.

A flip initiates a collection cycle. This entails copying all objects directly reachable from the

roots and forwarding the root pointers. The flip is an atomic operation: it must be run to completion

before executing other operations. In addition, Baker’s algorithm performs collection work when

allocating, so the user’s program is paused temporarily. The collection work increments are

atomic to prevent race conditions when there are multiple threads. Therefore, implementations

of software collectors, like Baker’s, often disable interrupts when executing collection work

increments or performing read barriers, but this causes event handling delays until ongoing

collection operations are performed.

The collector manages the function call stack differently from other dynamically allocated

objects to avoid performance penalties. The stack pointer is saved during the flip to indicate

which locations the collector needs to scan. Then the stack is processed incrementally from top

to bottom; discovered objects are copied and pointers updated to reference to-space locations.

However, the algorithm’s correctness relies on some modifications to stack operations that

decrease performance. For example, the read barrier must be enforced when loading from the

stack. Also, the collector’s pointer into the stack must be updated when the stack is popped to

avoid tracing unreachable locations.

The collector’s memory requirements are high as it is based on copying. In theory, the

33

CHAPTER 3. REAL-TIME GARBAGE COLLECTION

minimum memory requirements are twice the usable memory size. But in practice, the memory

requirements are much higher and depend on the configurable tax parameter that trades space

requirements for performance and responsiveness. The space overheads decrease as the user’s

program pays a higher tax per allocation. A high tax parameter also increases the worst-case

run-time of allocations and interrupt latency because allocations are atomic.

3.2.2 Brooks’ Garbage Collector for LISP

Brooks’ proposal is a change to Baker’s algorithm to improve performance [42]. Brooks observed

that loads are more frequent that stores, so he modified Baker’s collector to rely on a write barrier.

That is, the collector marks the pointers that are stored into memory. This ensures that the

program never introduces from-space pointers to to-space objects that have already been scanned.

But the write barrier no longer prevents the program from seeing to-space references only, so

a mechanism to always access the most up-to-date copy of an object is needed to guarantee

correctness. Brooks solves this problem by forcing an indirection on every memory access using

an address stored in a metadata word, known as a header, at the beginning of each object. The

efficiency of this approach is demonstrated by comparing the code size of Brooks’ indirection with

Baker’s need for additional test and branch instructions when accessing memory.

The timing properties of Brooks’ collector are largely similar to Baker’s. The function call

stack is processed incrementally although the roots are scanned atomically during a flip. Brooks’

collector must also scan the roots atomically at the end of the collection cycle instead of only at

the start to ensure that pointers to from-space do not remain in the roots. The root scan operation

at the end of the collection cycle is potentially run more than once until all live objects are marked

and scanned. As a result, processing the roots causes significant overheads and multiple pauses

in the worst-case.

3.2.3 The Treadmill

Baker proposed a further algorithm, the Treadmill, to eliminate the cost of copying from his

original proposal [31]. The Treadmill is a mark-sweep collector that divides the memory space

into equally-sized memory blocks. Each block has two pointers that are used to organize the full

memory space into a circular doubly-linked list. The collector labels the memory blocks according

to their status using the tri-color abstraction: white, gray and black. Objects can also be labeled

as ’free’. Four pointers into the list are used to keep track of the block status. The run-time of

collection operations is bound by a small constant because changing a block’s label, such as when

allocating, only involves simple pointer updates.

The Treadmill largely relies on the same principles as Baker’s original copying collector. How-

ever, the Treadmill is not suitable for systems that allocate objects of arbitrary sizes. In addition,

it suffers from internal fragmentation and has per block memory overheads corresponding to the

list pointers.

34

3.2. WORK-BASED REAL-TIME GARBAGE COLLECTION

3.2.4 Yuasa’s Garbage Collector for LISP

Yuasa published a mark-sweep real-time collector that uses a write barrier to maintain the

snapshot-at-the-beginning invariant [195]. The write barrier loads the location that is about to be

overwritten during a store operation. If the loaded value is a pointer, it is processed for marking;

discovered objects are marked and pushed into a stack to be scanned later. The advantage is

that write barriers are executed infrequently compared to read barriers. However, Yuasa’s write

barrier requires a load before performing the store, so reads take a longer time. Also, Yuasa’s

collector incurs space overheads due to the marking stack.

The algorithm is non-copying to eliminate performance overheads. External fragmentation

is not an issue as objects are allocated within fixed-size memory blocks. It is difficult to use

the collector in systems allocating objects of arbitrary size. However, this was not a concern for

Yuasa because his collector was originally intended for LISP where most objects are list cells

with two components. In addition, objects are scanned atomically during allocations as in Baker’s

algorithm, but this is not a problem for Yuasa’s collector either because LISP’s cell objects are

small and can be scanned quickly.

Yuasa’s algorithm pauses the program at the beginning of a collection cycle to scan the roots.

The root set consists of the processor’s registers and the function call stack. But the run-time of

root scanning is potentially unbounded because the stack is dynamic in nature and often very

large. Yuasa solves this problem by using an alternative collection stack where the contents of

the function call stack are copied for later processing. Yuasa states that this copy operation can

be done at the beginning of the collection cycle in the background using Direct Memory Access

(DMA). However, this incurs a performance impact and memory overheads to store the stack

with the copied pointers. Also, many embedded processors cannot operate concurrently with the

DMA, so the user’s program would be paused while the function call stack is copied.

3.2.5 Garbage Collection for the Jamaica Virtual Machine

Siebert proposed a work-based mark-sweep collector that aims to mitigate the performance

drawbacks of previous algorithms [159–164]. The collector was designed for the Jamaica Virtual

Machine, a Java implementation intended for real-time systems. It allocates objects within 32

byte memory blocks, although the size is configurable. This eliminates the need to compact,

but trades external for internal fragmentation. Multiple memory blocks can be allocated to

accommodate objects larger than the block size. This has clear performance drawbacks when

accessing large arrays and objects. Siebert mitigates these issues by organizing the blocks from

arrays into tree data structures and other objects into linked lists.

The collector uses a write barrier to maintain the invariant that black objects never contain

pointers to white objects. The write barrier marks pointers to white objects that are being stored

into black objects. The marked objects are also added onto a list for later processing. The collector

must scan each memory block atomically during marking, so choosing a large block size causes

35

CHAPTER 3. REAL-TIME GARBAGE COLLECTION

long program pauses. Race conditions between the user’s program and collector are prevented

because thread switching occurs at specific synchronization points in the program. It is only

necessary that the invariant is true at the synchronization points rather than between them.

The code between synchronization points runs without interruption and performs collection

work during allocations. The drawback is that identifying the synchronization points requires

programmer intervention.

An innovation in Siebert’s collector simplifies root marking. The collector has a single root

pointer and every object referenced from the registers or the function call stack must also exist in

memory. This ensures that program pauses during root marking are kept very short. But there is

a performance cost because the program must constantly ensure that the references in the roots

are backed up in memory.

3.2.6 Blelloch and Cheng’s Multi-Core Garbage Collector

Blelloch and Cheng invented a copying collector with provable time and space bounds [39, 50]. The

collector uses Baker’s work-based technique to schedule work, but the algorithm is parallel and

runs concurrently with the user’s program across multiple cores. Compared to Baker’s collector,

Blelloch and Cheng’s algorithm has significantly higher memory and performance overheads due

to the complexity of maintaining consistency across all cores. It is also unsuitable for embedded

systems that are often single-core rather than multi-core.

The collector is snapshot-at-the-beginning and uses a modified version of Nettle and O’Toole’s

write barrier [122]. This requires the collector to maintain two copies of every object in memory

with the program only seeing from-space copies. The write barrier copies the object referenced

by the pointer being overwritten if a copy does not exist already. It also updates all copies of

the object being accessed. But the pointer written must also be marked, if the object accessed

already has a copy, to ensure that from-space references are not introduced into to-space. The

write barrier is very expensive, so Blelloch and Cheng proposed to only record the store in a log

during the write barrier. The log is later processed during allocation operations. However, this

requires additional storage space for the log and further performance overheads.

A flip and the termination of a collection cycle are complex operations in Blelloch and Cheng’s

collector because all processes must be stopped and the roots processed atomically, so program

pauses are introduced. In addition, Blelloch and Cheng place some restrictions to facilitate the

real-time analysis. First, collection work increments, such as root scanning and copying, are

atomic and pause the program. Second, the system does not support nested interrupts. And third,

allocations must be followed by the explicit initialization of every field within the new object

before a further allocation is performed.

Blelloch and Cheng’s collector scans the function call stack incrementally. The stack is divided

into fixed size stacklets that must be scanned atomically (see Section 8.2.3.3). This facilitates

bounding the time that the collector spends marking the roots. However, additional code is needed

36

3.3. PROBLEMS WITH WORK-BASED REAL-TIME GARBAGE COLLECTION

to operate the stack; this causes overheads.

3.2.7 Ritzau’s Reference Counting Garbage Collector

Ritzau developed a reference counting collector for real-time systems [140, 141]. The collector

allocates objects within fixed-size blocks to avoid external fragmentation. Each block has a header

with space for a pointer and the reference count. The blocks are initially organized in a free list

that can be used to fulfil allocation requests. The collector uses deferred reference counting to

reclaim dead objects. Blocks whose reference count reaches 0 are added to a to-be-free list instead

of being reclaimed immediately. The to-be-free list is only processed when there is not enough

memory in the free list to fulfil an allocation. In this sense, Ritzau’s collector is work-based as the

program must perform collection work proportional to the allocation size.

The advantage of Ritzau’s collector is that reference counting does not require scanning the

roots, so marking pauses are eliminated. However, the collector is incapable of reclaiming data

structures forming cycles and it is not clear how this problem is addressed without affecting the

collector’s timing properties. There are also high memory overheads as each block’s header is

12-16 bytes in size. Objects smaller than the block size will cause internal fragmentation. Multiple

blocks are used to accommodate objects larger than the block size. These large allocations will

incur further memory overheads due to the unused headers for each object. Large objects must

be organized using linked lists or trees as proposed by Siebert [162], and as such they incur

performance penalties.

3.3 Problems with Work-Based Real-Time Garbage Collection

Real-time programs must be carefully analyzed to determine the Worst-Case Execution Time

(WCET) of every execution path. The worst-case corresponds to the longest time taken to execute

a fragment of code regardless of how frequent the worst-case scenario occurs. Two properties are

desirable to facilitate the worst-case analysis. First, the time taken to perform the operations,

such as loads and adds, along every execution path must be bound by a small constant in the

worst-case. Second, the worst-case and average-case execution time should ideally be similar.

It might still be possible to meet real-time constraints without the second property. However,

the system’s resources are likely to be underutilized to ensure that deadlines are met in the

worst-case that may rarely (if ever) happen.

Work-based garbage collectors have been shown to fulfil the first property. Baker’s, Siebert’s

and other work-based collectors are supplemented by a formal analysis showing that store, load

and allocation operations can be bound by a small constant. But these collectors do not meet

the second property, so they are impractical. This is because the collection work performed in

connection to memory operations increases the worst-case time and memory bounds in unrealistic

ways [28, 55, 79].

37

CHAPTER 3. REAL-TIME GARBAGE COLLECTION

Consider Baker’s copying algorithm to illustrate the problem. The program performs collection

operations as tax for memory allocated. The worst-case duration of an allocation will occur during

and shortly after a flip when many objects are discovered and copied. Programs do not perform as

much collection work when allocating at other times. So there is an asymmetry in the run-time of

operations that incur collection work [55]. However, the execution time analysis must assume

the worst-case for every allocation and memory access. This results in excessive processing and

memory resources being reserved even though they are not needed. A related issue is caused

by the uneven spread of collection work. In Baker’s collector, the run-time of read barriers and

allocations shortly after the flip approaches the theoretical worst-case run-time. The user’s

program will be overloaded with collection work during this time if it performs several allocations

or memory accesses. Therefore, a fair share of the processor is not guaranteed for the user’s

program shortly after the flip. Time-based real-time garbage collection, discussed in Section 3.4,

partially addresses these deficiencies.

3.4 Time-Based Real-Time Garbage Collection

Most modern real-time collectors are time-based. In this approach, collection work is scheduled

in a separate execution thread and considered as another task in the traditional scheduling

analysis for the real-time system. The analysis uses the program’s allocation and collection

rates to statically estimate the system’s memory requirements and the amount of time that

the collection thread must be run to guarantee that deadlines are always met. Similar to the

work-based approach, the allocation rate is extracted from the real-time program using static

analysis methods and the collection rate is estimated using the collector’s timing model.

Time-based garbage collection successfully addresses the drawbacks of work-based collection.

But the scheduling analysis of the real-time system is more complex when using time-based

collectors because the collection thread needs to be scheduled. This section describes time-based

collectors in the literature.

3.4.1 Henriksson’s Low Priority Garbage Collection

Henriksson published one of the earliest works on time-based garbage collection. He proposed a

copying collector based on Bengtsson’s [33] and extensively analyzed how it could be executed

in a separate thread [79, 142]. Henriksson’s proposal schedules the collection thread using the

slack stealing technique. The collection thread is assigned a low priority and is scheduled when

high priority, hard real-time threads are not running. The collector only runs until enough

work has been performed to guarantee that high priority threads will not be paused. Any spare

processor capacity not used by high priority or collection threads is used to execute low priority,

soft real-time threads. However, the low priority threads are taxed for memory allocations with

the usual work-based strategy.

38

3.4. TIME-BASED REAL-TIME GARBAGE COLLECTION

The collector relies on a Brooks-style write barrier to ensure that pointers to from-space

locations are not written into to-space objects. Lazy evacuation is also used to mitigate the

overheads of write barriers in high priority threads. The idea is that space for a newly discovered

object is only reserved during a write barrier; the bulk of the copying work is deferred to the

garbage collection thread. In addition, every memory access must follow the usual Brooks address

indirection using a pointer in the object’s header. Interrupts must be disabled when performing

pointer operations as the write barrier is atomic. Other operations, such as procedure calling and

object copying, are also atomic. This causes jitter as interrupt handling is potentially delayed.

Henriksson’s object headers incur high memory overheads of up to 16 bytes per allocated

object. Each header has space to accommodate the forwarding pointers and collection information

such as references to type maps. The thread function call stacks are considered part of the root

pointers and are scanned incrementally. Each call stack is actually a data structure with two

independent stacks. The first stack contains the regular call frames created by the program.

The second stack only has references to addresses that contain pointers in the first stack. This

increases the programs memory and performance overheads as pushing and popping values to

the stack actually involves operations in two data structures.

3.4.2 Metronome

The Metronome is a time-based real-time collector proposed by Bacon, Cheng and Rajan [27, 28].

It is a mark-compact snapshot-at-the-beginning algorithm that aims to reduce copying. The

algorithm divides the memory space into pages of configurable size. Each page is further divided

into blocks of equal size. Allocations are served from the page with enough free space and block

size that most closely matches the requested memory size. Sparsely allocated pages are collected

during a defragment stage by copying the live objects to more occupied pages. This reduces the

amount of copying required.

The collector and program threads are interleaved using a fixed schedule. This causes long

interrupt latencies as the collector cannot be preempted arbitrarily. In addition, the program

thread’s procedure call stacks are part of the roots and cannot be scanned incrementally. Therefore,

the Metronome requires the stack size to be tightly bound so that it can be scanned atomically

within a collection work increment. The Metronome uses a read barrier to maintain correctness

and Bacon, Cheng and Rajan suggest that compiler optimizations can be used to mitigate its

performance overheads. However, Detlefs observes that these optimizations require interrupts to

be disabled for a potentially long time, so interrupt latencies are increased [55].

An analysis of the Metronome’s real-time properties features in Bacon, Cheng and Rajan’s

work. This analysis requires program parameters such as the allocation rate, the size of live data,

the number of pointers in memory and some scheduling information. However, their formulation

is not rigorous as the worst-case run-time bound for the defragment stage relies on empirical

observations rather than analytical bounds. It is not difficult to see how programs will cause

39

CHAPTER 3. REAL-TIME GARBAGE COLLECTION

much higher worst-case run-times for collection operations.

3.4.3 Kim et al’s Copying Garbage Collector

Kim et al observed that Henriksson’s approach to scheduling collection work yields high memory

overheads to avoid unexpected pauses [91–93]. So Kim et al schedule the garbage collection

thread as an aperiodic task. Through experimentation, they find that their real-time collector

reduces memory overheads by 14-38% compared to Henriksson’s approach. Kim et al also

present an analysis of the collector’s real-time properties. They supplement their work with a

proposed strategy to statically estimate the program’s live size which is an essential parameter

for scheduling real-time garbage collectors.

Kim et al’s algorithm is largely similar to Henriksson’s as both are copying collectors relying

on Brooks-style write barriers and lazy evacuation. However, Kim et al’s write barriers only

log stores in an update entry instead of lazily evacuating newly discovered objects. The update

entry is checked at the end of the collection cycle and all pending objects are evacuated. This

logging technique reduces the write barrier overhead for the program, but increases the amount

of collection work and storage space requirements. It is also unclear how Kim et al’s algorithm

handles update entry overflows.

Kim et al’s algorithm requires the from-space memory to be zeroed during the flip at the end

of the collection cycle. Hardware is used to ensure that the memory is zeroed in constant time so

that the flip is atomic. Other details of the collector are unclear, such as root and stack scanning.

3.4.4 Chang’s Hybrid Garbage Collector

Chang proposed a hybrid real-time garbage collector aiming to reduce memory and performance

overheads compared to previous time-based collectors [46–48]. It combines Ritzau’s reference

counting technique with basic mark-sweep [141]. The hybrid design is motivated by Hampton’s

observation that data structures that do not form cycles account for 44-100% of the total memory

usage with an average of 81% [77]. Chang expects that most objects will be reclaimed immediately

after they become garbage using reference counting and only objects forming cycles will be

reclaimed by the mark-sweep collector. Therefore, most garbage can be recycled very quickly and

less memory is needed to ensure that the user’s program is never paused.

The hybrid collector allocates objects within fixed-size blocks as it does not compact, so it

suffers from internal fragmentation. Every block has a word that is used to group them in linked

lists. Objects are allocated using one or more blocks, but the first block contains a header that

is three words in size. The header has two reference counts: the first counts the references

from the roots while the second counts references from other objects. The collector relies on two

types of write barriers to ensure that white objects are not referenced from black objects. The

write-barrier-for-objects only adjusts the object counts when references are added or removed from

other objects. In contrast, write-barrier-for-roots adjusts the object’s root count when a reference

40

3.4. TIME-BASED REAL-TIME GARBAGE COLLECTION

is added or removed from the roots. The write-barrier-for-roots eliminates the need to scan the

root set because references from the roots are tracked by counts, so the collector is simplified.

However, the roots are normally modified very frequently with pointers constantly being added

and removed, so we expect that maintaining the root reference count incurs high performance

overheads.

Chang’s collector is scheduled using the dual-priority approach. There are two collection tasks

to schedule: reclaiming and tracing. The reclaiming task is run at high priority and reclaims

memory blocks in the to-be-free and white-list-buffer lists. The to-be-free list contains memory

blocks from garbage objects found using reference counting. The white-list-buffer list contains

garbage objects found by the tracing collector. The tracing task is periodic and runs the tracing

collector at low priority. Chang’s expectation is that most garbage objects are found via reference

counting, so the reclaiming task is run more often than the tracing task.

Compared to incremental mark-sweep, we expect the hybrid collector to incur significant

memory and performance overheads when the majority of objects are linked in data structures

forming cycles. In this case, the inherent costs of reference counting are redundant. Also, reclaim-

ing garbage objects forming cycles takes longer in Chang’s collector because the tracing task runs

at low priority. Therefore, using the hybrid collector can be counterproductive in some systems.

Another disadvantage of Chang’s collector is that its real-time analysis requires measuring the

amount memory from objects forming cycles, but no techniques are proposed to estimate this and

it is unclear whether the programmer can provide the information.

3.4.5 Garbage Collection for Safety Critical Java

The Real-Time Specification for Java (RTSJ) attempts to work around the limitations of garbage

collectors for real-time systems [40]. RTSJ’s approach is to create a new type of thread with

explicitly managed scoped memory for dynamic allocations. The scoped memory is not garbage

collected; objects are deallocated in bulk by reclaiming the full scope. But RTSJ imposes restric-

tions on the programmer to enforce the safe use of memory. Schoeberl points out that these

restrictions are too strict and proposes a time-based garbage collector to regain the simplicity of

Java in real-time systems [147].

Schoeberl’s time-based collector is run in its own thread [147, 148, 151]. It is a copying

snapshot-at-the-beginning collector that uses a write barrier and handles to avoid having to

update pointers after copying. Each handle is associated with a location in memory that contains

the object’s address, size and other administrative information. Schoeberl’s algorithm performs

an extra sweep stage at the end of copying that iterates over every handle and reclaims those

that correspond to dead objects. There is also a clear stage that zeroes the from-space memory in

preparation for the next collection cycle. However, Schoeberl did not provide a timing model of

his collector as required by real-time systems.

The majority of the algorithm is implemented in software, so operations like the write barrier

41

CHAPTER 3. REAL-TIME GARBAGE COLLECTION

need to be protected by locks to prevent race conditions between program and collector. However,

Schoeberl and Puffitsch optimize the copying operation using hardware (see Section 4.1.4) [150].

The implementation of the copy accelerator is microcoded and takes up to 27 clock cycles to copy

each word of data.

Schoeberl’s collector is intended to support the Safety Critical Java (SCJ) standard [103].

Programs compliant with SCJ are composed of an initialization followed by a mission stage. The

initialization stage is assumed to not be hard real-time, so it is collected in a stop-the-world

fashion. The mission stage is hard real-time, but it is assumed that the collector only runs when

the thread procedure call stacks are empty. Therefore, the root scanning operation is greatly

simplified because the stacks do not need to be processed. In addition, Schoeberl observes that

some objects allocated during the initialization stage are never reclaimed. So Schoeberl partitions

the memory into immortal and garbage collector spaces where initialization and mission objects

are allocated respectively. Partitioning improves performance because the immortal space is only

scanned in search for pointers; it is never compacted. These simplifications to the collector are

beneficial for SCJ, but it is not clear whether the collector can be easily ported to support other

programming languages and standards like Python.

3.5 Problems with Existing Real-Time Garbage Collectors

Work-based and time-based garbage collectors require the system to be supplied with extra

memory to avoid unexpected pauses, but the requirements are often impractical. Previous

studies indicate that existing real-time collectors increase memory requirements by factors of

1.6-8 [28, 50, 87, 92]. Also, the collectors are implemented in software, so the user’s program must

regularly pause for the processor to execute collection operations. Therefore, real-time collectors

only guarantee as little as 40-50% of the processor’s time for application work [28].

Another problem with existing real-time collectors is that their hard real-time analysis

formulations are often incomplete, like Schoeberl’s, or flawed, like the Metronome’s. Also, the

proposed static timing analysis techniques for garbage collection rely on information extracted

from the program, like the allocation rate, to estimate the system’s memory requirements or

create a real-time schedule. But there is little research into automated tools that programmers

can use to facilitate this task. As a result, existing real-time garbage collectors are unusable in

practice.

3.6 Tax-and-Spend: An Alternative Scheduling Approach

The work-based and time-based scheduling approaches only target a limited subset of applications

and environments. For example, Metronome is intended for single-core or small multi-core

systems while Henriksson’s slack stealing collector is suitable for periodic applications and does

not work well under high load. So Auerbach et al proposed the tax-and-spend scheduling approach

42

3.7. REAL-TIME GARBAGE COLLECTORS FOR MULTI-CORE SYSTEMS

that combines the work-based and time-based strategies [25]. The idea is that tax-and-spend

leverages the benefits of both work-based and time-based collectors and is sufficiently flexible to

be used in many different applications and environments.

Tax-and-spend has two mechanisms to schedule collection work. First, there are dedicated

garbage collection threads that are interleaved with program execution, for example, during

any available slack or idle time. However, this concurrent collection work may not be sufficient

to prevent long pauses. So the second scheduling strategy is to tax the program threads with

collection work in a manner suitable to achieve that thread’s utilization target.

Auerbach et al observed that tax-and-spend provides 3 times shorter latencies and better

processor utilization when compared to Metronome. But tax-and-spend requires the collector to

support both incremental and concurrent operation which increases implementation complexity.

Also, tax-and-spend is intended for large multi-core systems as opposed to embedded devices.

These multi-core systems are normally soft real-time, instead of hard real-time, because they

rely on features, like caching and virtual memory, that have highly unpredictable latency. For

these reasons, we do not consider tax-and-spend further in this thesis.

3.7 Real-Time Garbage Collectors for Multi-Core Systems

The garbage collectors described in this chapter are suitable for single-core and small multi-core

systems. But these collectors do not scale well to large multi-core systems. Specifically, it is

difficult to ensure that real-time collectors do not incur high overheads and long pauses when

compacting to prevent fragmentation in multi-core systems. Pizlo et al proposed a lock-free

concurrent garbage collector called Stopless to address this problem [132]. Stopless uses an

intermediate wide copy of an object being compacted that stores the object’s contents along with

status flags for every word. A collection barrier on every access uses the status flags to ensures

that the user’s program reads or writes the correct memory location using Compare-And-Swap

(CAS) atomic operations.

In further work, Pizlo et al proposed two further collectors, Chicken and Clover, based

on Stopless that eliminate the need for the wide copy at the expense of longer worst-case

performance [133]. Chicken eagerly assumes that the user’s program will not access an object

being compacted and simply aborts the copy operation if this does occur. So Chicken’s read and

write barriers are simpler compared to Stopless’, but the copy aborts may cause fragmentation.

McCloskey et al independently proposed a solution very similar to Chicken called Staccato [110].

Clover is similar to Stopless, but uses a randomly generated value α to signal that a field of an

object has been copied. Clover’s write barrier detects when α is stored to memory and pauses the

user’s program until compacting finishes. However, the likelihood of these pauses occurring is

very low if α is selected appropriately, so Clover mostly runs lock-free and without long pauses.

The concurrent garbage collectors described in this section are intended for soft real-time

43

CHAPTER 3. REAL-TIME GARBAGE COLLECTION

systems as observed by Pizlo et al [132, 133]. This is because multi-core systems usually rely on

caches and virtual memory. Also, the collectors often cannot guarantee progress, for example,

because object copies are aborted, and their hard real-time properties are not formally analyzed.

3.8 Summary

The design of hard real-time garbage collectors has not changed significantly since Baker’s original

proposal [32]. The differences between early work-based and modern time-based approaches

mostly lie in how collection work is scheduled to balance memory requirements, performance

overheads and pauses.

As seen in the previous sections, work-based approaches tax the program with collection work

in exchange for memory allocations. These collectors focus on bounding the worst-case run-time

of all operations that incur collection work with a small constant. But the average-case and worst-

case run-times of these operations differ substantially, so the performance and memory overheads

due to garbage collection are often infeasible. Time-based collectors address the limitations of

work-based collectors at the expense of increased complexity in the scheduling analysis of the

hard real-time system.

The main features of the work-based and time-based collectors surveyed in this chapter are

summarized in Table 3.1. The collectors are mostly implemented in software and eventually

interfere with the program’s execution to run read or write barriers, trace objects, adjust reference

counts or copy objects. These operations are often difficult to perform incrementally and may

require interrupts to be disabled, so the system’s responsiveness to events is impaired. In addition,

efficiently implementing function call stack scanning is often complex due to the stack’s dynamic

nature. As a result, existing hard real-time garbage collectors are difficult to use and incur high

run-time and memory overheads.

44

3.8. SUMMARY

B
as

ic
A

lg
or

it
hm

Sc
he

du
li

ng
B

ar
ri

er
O

bj
ec

t
C

op
yi

ng
In

cr
em

en
ta

l
R

oo
t

Sc
an

ni
ng

D
is

cu
ss

ed
in

Se
ct

io
n

B
ak

er
C

op
yi

ng
W

or
k-

ba
se

d
R

ea
d

In
cr

em
en

ta
l

N
o

3.
2.

1
B

ro
ok

s
C

op
yi

ng
W

or
k-

ba
se

d
W

ri
te

In
cr

em
en

ta
l

N
o

3.
2.

2
T

re
ad

m
ill

M
ar

k-
sw

ee
p

W
or

k-
ba

se
d

R
ea

d
N

on
-c

op
yi

ng
N

o
3.

2.
3

Yu
as

a
M

ar
k-

sw
ee

p
W

or
k-

ba
se

d
W

ri
te

N
on

-c
op

yi
ng

N
o

3.
2.

4
Si

eb
er

t
M

ar
k-

sw
ee

p
W

or
k-

ba
se

d
W

ri
te

N
on

-c
op

yi
ng

Si
ng

le
ro

ot
3.

2.
5

B
le

llo
ch

an
d

C
he

ng
C

op
yi

ng
W

or
k-

ba
se

d
W

ri
te

A
to

m
ic

N
o

3.
2.

6
R

it
za

u
R

ef
er

en
ce

co
un

ti
ng

W
or

k-
ba

se
d

—
N

on
-c

op
yi

ng
—

3.
2.

7

H
en

ri
ks

so
n

C
op

yi
ng

T
im

e-
ba

se
da

W
ri

te
A

to
m

ic
Ye

s
3.

4.
1

M
et

ro
no

m
e

M
ar

k-
co

m
pa

ct
T

im
e-

ba
se

d
R

ea
d

A
to

m
ic

N
o

3.
4.

2
K

im
et

al
C

op
yi

ng
T

im
e-

ba
se

d
W

ri
te

U
nc

le
ar

Ye
s

3.
4.

3
C

ha
ng

H
yb

ri
db

T
im

e-
ba

se
d

W
ri

te
N

on
-c

op
yi

ng
Ye

s
3.

4.
4

Sc
ho

eb
er

l
C

op
yi

ng
T

im
e-

ba
se

d
W

ri
te

In
cr

em
en

ta
lc

U
nc

le
ar

3.
4.

5

Ta
bl

e
3.

1:
C

om
pa

ri
so

n
of

re
al

-t
im

e
ga

rb
ag

e
co

lle
ct

io
n

al
go

ri
th

m
s.

a T
he

co
lle

ct
or

is
ti

m
e-

ba
se

d,
bu

t
lo

w
pr

io
ri

ty
th

re
ad

s
ar

e
ta

xe
d

w
it

h
co

lle
ct

io
n

w
or

k.
b R

ef
er

en
ce

co
un

ti
ng

an
d

m
ar

k-
sw

ee
p.

c U
se

s
ha

rd
w

ar
e

to
in

cr
em

en
ta

lly
co

py
ob

je
ct

s
in

th
e

ba
ck

gr
ou

nd
.

45

C
H

A
P

T
E

R

4
HARDWARE GARBAGE COLLECTION

Garbage collection has long been a source of overheads. Previous studies found that software

collectors account for up to 40% of a program’s run-time [43, 67]. This occurs because software

garbage collectors do not run efficiently on conventional computer architectures. Collectors rely on

simple memory operations that are better suited to dedicated hardware. For example, researchers

observed that tracing is up to 9 times faster when implemented using dedicated hardware [104].

As a result, hardware optimizations for garbage collection have been studied for decades.

Early hardware garbage collectors were motivated by the high overheads of managed lan-

guages like LISP [117, 118] and Smalltalk [179, 187]. For example, Smalltalk programs were

found to run 5 to 20 times slower than equivalent C programs [188]. Thus, special-purpose

computers that relied on hardware garbage collection were built in the 1980s. However, these

collectors were not intended for real-time systems. In addition, the special-purpose machines

were not commercially successful because the applications of their architectures were limited

and their development cost was too high [145]. In this chapter we explain and compare more

recent hardware garbage collection proposals from the literature. We classify the proposals in two

groups, hardware-assisted and hardware-implemented, according to the extent that the collection

algorithm is realized in hardware.

4.1 Hardware-Assisted Garbage Collection

Hardware-assisted garbage collection optimizes only part of the algorithm using dedicated

hardware. For example, Maas et al implement a hardware unit to accelerate tracing [104]. The

specific hardware-assistance varies substantially across proposals, but in general, the idea is to

accelerate the collection algorithm without compromising the machine’s general-purpose functions

or incurring high hardware overheads. The disadvantage is that optimization opportunities using

47

CHAPTER 4. HARDWARE GARBAGE COLLECTION

hardware are lost because most of the collector is implemented in software. In the remainder of

this section, we discuss proposals for hardware-assisted garbage collection from the literature.

4.1.1 Pauseless

Azul Systems developed the Pauseless garbage collector for their enterprise multi-core system [52].

Pauseless is both parallel and concurrent; one or more cores run the collector while other cores

execute the user’s program. As a result, Azul’s system is ideal for large enterprise applications on

virtual machines, such as Java. But the system is only soft real-time and it does not appear to

support weakly typed languages, such as C.

Pauseless implements a collector based on mark-compact mostly in software. A collection cycle

has three stages. First, the memory is traced and live objects are marked. Marking is followed by

a relocation stage that copies marked objects from sparsely populated pages to other pages; the

physical storage for the sparse pages is reclaimed. Virtual memory protection is used to ensure

that the user’s program does not access pages currently being compacted. But hardware support

is required to implement virtual memory efficiently and such features are rarely available in

small embedded processors. A third stage, called remap, updates pointers to reference the new

location of copied objects.

Azul’s system uses hardware to accelerate Pauseless’s read barrier. There is a barrier instruc-

tion that generates fast garbage collection traps, but the read barrier itself is implemented in

software. During marking, the read barrier marks pointers being loaded into the roots. Loads

during remap are also trapped to update pointers to old addresses before these are loaded into

the roots. Barrier instructions generating a trap effectively pause the program while the barrier

completes. Traps occur more frequently and take longer to perform at the start of the collection

cycle because most unmarked pointers are discovered early, so the program may not progress its

work much during some time intervals. This clustering effect of read barrier traps is undesirable

in real-time systems because it is difficult to guarantee that a fair share of the processor will

always be available for the program.

Azul’s system uses checkpoints; points where the collector cannot proceed until all threads

perform some action. The checkpoints require program threads to pause and run garbage collec-

tion operations. For example, a checkpoint at the start of the collection cycle enables marking

the root set. But this can take a potentially long time as the root set includes the registers,

stacks and globals. Another checkpoint at the start of the relocation stage is used to update all

root references to live objects in the sparse pages that will be compacted. Therefore, Pauseless

introduces program pauses that account for up to 16% of the time over a 2 second interval.

4.1.2 Joao et al’s Hybrid Garbage Collector

Joao et al proposed a hybrid garbage collector for server machines [86]. Through experimentation,

they observed that software collectors account for 15-55% of run-time overheads. These occur

48

4.1. HARDWARE-ASSISTED GARBAGE COLLECTION

because the user’s program is often paused waiting for the collector to reclaim memory, so sub-

stantially increasing the memory size reduces the overheads. Joao et al’s approach is conceptually

similar to Chang’s collector described in Section 3.4.4. They rely on reference counting to reclaim

and repurpose most of the memory as soon as it becomes garbage while a backup tracing collector

is used to identify garbage data structures forming cycles.

Reference counting has high run-time overheads due to the need to constantly update the

counts. Therefore, Joao et al include hardware that coalesces multiple reference count updates

while an object is cached. The counts are only updated in memory when an object is evicted

from the caches; as a result, the performance cost is mitigated. Objects found to be dead using

reference counting are added to a free list that is used to quickly satisfy allocations without

obtaining further space from the memory system. But embedded devices do not always have a

cache. Also, Joao et al’s scheme has substantial cache memory overheads: 66.5 KB for a 64-bit

system with 64 KB L1 D-cache and 4 MB L2 cache. These overheads are needed to store the

collector’s metadata, like the reference counts, in the cache.

The majority of the collector is implemented in software except the reference counting

updates. So the collector introduces pauses for operations such as root scanning. The duration

and frequency of these pauses vary depending on the software collector; the reference counting

hardware imposes few restrictions in this regard. However, the user’s program must execute

special instructions instead of normal loads and stores to let the hardware know when pointers

are copied or overwritten. This makes it difficult to use Joao et al’s collector with weakly typed

programming languages. The need for special instructions also makes it difficult to efficiently

implement basic functions, such as copying a block of memory, because the software must be

aware of the type of the words copied and overwritten. Finally, it is difficult to analyze the

real-time properties of hybrid collectors, as discussed in Section 3.4.4, as there are no techniques

to automatically estimate the amount of space taken up by objects forming cycles.

4.1.3 Maas et al’s Mark-Sweep Accelerator

Maas et al proposed a hardware accelerator to mitigate the performance overheads of tracing

garbage collectors in servers [104]. They observe that mark-sweep collectors spend 75% of time

in the marking stage while only 15% performing read and write barriers. Therefore, Maas et

al designed a hardware component that sits alongside the memory controller and performs the

mark and sweep stages.

The accelerator has two main units: traversal and reclamation. The traversal unit implements

the regular tracing algorithm in a pipelined fashion. Pointers and data are segregated into

partitions within objects to facilitate marking, but this also makes Maas et al’s collector unsuitable

for weakly typed languages. The reclamation unit consists of a set of block sweepers that perform

the sweep operation in parallel across multiple memory blocks. The collector does not compact

memory, so it is vulnerable to fragmentation.

49

CHAPTER 4. HARDWARE GARBAGE COLLECTION

Maas et al only evaluate a basic implementation of their hardware accelerator alongside a

RISC V processor running Linux. Compared to a software garbage collector, their accelerator

performs mark and sweep 4.2 and 1.9 times faster respectively. However, the implementation is

only stop-the-world and does not account for the challenges of concurrent collectors that cause

considerable overheads. This is clearly unsuitable for real-time systems although Maas et al

provide ideas on how they expect the collector to work concurrently. In addition, the collector is

designed to operate alongside caches, virtual memory and complex memory controllers that are

not available in small embedded processors.

4.1.4 Schoeberl and Puffitsch’s Object Copying Accelerator

Schoeberl and Puffitsch use hardware to accelerate object copying and memory accesses via

handles [150] in the Java Optimized Processor (JOP) [146]. Their accelerator operates in a

Direct Memory Access (DMA) fashion and is designed for Schoeberl’s real-time collector (see

Section 3.4.5). The software initiates the copy operation by providing source and destination

addresses along with the object’s size, then the accelerator performs the copy in the background

independently from the processor. Schoeberl and Puffitsch’s design also reduces pause times due

to read and write barriers. A memory access from the processor to an object currently being copied

interrupts the accelerator. The memory access is blocked for 12 clock cycles before the hardware

resolves it. The delay occurs because copying can only be interrupted at word boundaries, so the

accelerator effectively steals memory cycles from the processor. Once interrupted by the user’s

program, the software must manually restart the copy operation which causes further delays and

pauses.

The software collector must poll the accelerator to check when a copy operation terminates.

Normally, data is copied at a rate of 5 clock cycles per word after the software starts the copy oper-

ation for an object. But Schoeberl and Puffitsch implemented and evaluated a simplified version

of their accelerator that must be triggered for every individual word to copy. The accelerator must

be triggered so frequently that it only operates while the software collector is running. So most of

the performance benefits are eliminated because the accelerator cannot run independently in the

background. In addition, copies are significantly slower at a rate of 27 clock cycles per word.

4.2 Hardware-Implemented Garbage collection

Garbage collectors are hardware-implemented if most of the algorithm is implemented using

dedicated hardware. For example, Gruian and Salcic proposed a mark-compact collector fully

implemented in hardware [74]; no part of the algorithm is realized in software. Hardware-

implemented collectors enable performance and memory optimization opportunities that are

difficult to match using software. In addition, the close integration between processor and garbage

50

4.2. HARDWARE-IMPLEMENTED GARBAGE COLLECTION

collector in hardware facilitates eliminating pauses and overheads due to coordination between

the two components. However, there are a number of perceived disadvantages [86]:

• Hardware-implemented collectors may limit the machine’s general-purpose capabilities

as it occurred with early LISP and Smalltalk computers. We consider that this perception

arises because hardware-implemented collectors have traditionally been used alongside

esoteric computer architectures that are often too specialized, such as object-oriented [111]

or high-level language computer architectures [117, 118, 179, 187]. However, there is

little research attempting to use hardware-implemented collectors with conventional RISC

processors and no evidence that this is inviable.

• The cost of developing and verifying hardware-implemented collectors can be high because

they incur major changes to the processor or memory architecture [86], but this is not

always true. Hardware-implemented collectors can be realized as self-contained, add-

on components that are connected to the processor via standard interfaces [124, 145,

165]. These garbage collectors do not require changing existing processor architectures or

microarchitectures. Also, hardware-implemented collectors are not necessarily intended for

large-scale systems, such as servers. They can instead be designed for smaller embedded

systems that are less costly to develop and verify.

• Programs have widely different behaviors, so the memory management algorithm is ex-

pected to adjust to the software’s needs. Hardware-implemented collectors are considered

too inflexible to adjust to these changing requirements. This may be accurate in the con-

text of large-scale systems. However, embedded systems have significantly more limited

hardware and simpler memory hierarchies that do not permit as wide of a memory manage-

ment design space compared to large-scale systems. In addition, hardware-implemented

collectors achieve performance that is difficult to match with software.

We discuss hardware-implemented collectors from the literature in the remainder of this

section.

4.2.1 The Garbage Collected Memory Module

Nilsen and Schmidt’s Garbage Collected Memory Module (GCMM) is one of the first real-time

hardware collectors [124, 145]. The module is a self-contained, add-on memory component

that can be connected to the processor using standard interfaces. GCMM consists of a private

microprocessor that runs a copying collector in the background alongside the main processor

executing the user’s program. The collector’s semispaces are stored in separate memory banks

within GCMM and memory cycles are allocated to the collector or the program by an arbitrer.

This arrangement has prohibitive hardware costs for embedded systems due to the need for a

dedicated processor for the garbage collector.

51

CHAPTER 4. HARDWARE GARBAGE COLLECTION

GCMM introduces pauses during program execution to obtain the roots and type information

from the main processor. These pauses last up to 500 clock cycles in the worst case. In addition,

read barriers take up to 6 memory cycles to complete. In general, a system with GCMM is slower

than a system without it by 0-30%. These overheads are caused by cache flushing when GCMM

copies objects. Another factor that contributes to the delays is that GCMM dynamically allocates

function call stack frames which greatly increases the demand for free memory, especially on

recursive programs.

4.2.2 Active Memory Processor

The Active Memory Processor (AMP) is a self-contained, add-on memory component similar

to GCMM [165]. AMP implements a reference counting and mark-sweep collector using a pri-

vate microprocessor and bitmaps. Most garbage memory is normally reclaimed using reference

counting while the mark-sweep collector is run infrequently to reclaim data structures forming

cycles. Therefore, AMP reduces memory requirements by 77% as most dead objects are reclaimed

without delay by the reference counting collector.

An AMP module manages 4 MB of memory on behalf of the program. Multiple modules can

be grouped to form larger systems. External fragmentation occurs because live memory is not

compacted. AMP modules receive commands from the main processor to allocate memory, but it

is not clear how other operations, such as read/write barriers and root marking, are performed.

Collection operations and allocations are implemented efficiently using bitmaps. Each memory

block is associated with a set of bits that are fed into and-gate and or-gate trees to compute

information such as where a block of size n can be allocated. The bitmaps are too large to

implement using dedicated hardware, so instead they are organized using software and cached

within the AMP for fast access. However, the cache makes it difficult to analyze the system’s

real-time properties and a dedicated microprocessor for garbage collection incurs high overheads

for embedded devices.

4.2.3 Meyer’s Copying Garbage Collector

Meyer proposed an on-chip garbage collection coprocessor that uses semispace copying [112]. The

collector is tightly coupled with the processor to reduce the coordination overheads between the

two components. Thus, Meyer’s collector pauses the processor for 300 clock cycles when marking

the roots (instead of 500 with Nielsen and Schmidt’s GCMM) and read barriers incur overheads

of 50-100 clock cycles. In further work, Meyer moves the hardware implementation of the read

barrier from the coprocessor to the processor and reduces its overheads to 5-50 cycles [113].

Meyer also estimates that his collector has memory overheads in a 3-5 factor to achieve real-time

behavior, but no formal real-time analysis is presented to corroborate this.

The collector is designed for a novel object-oriented architecture previously presented by the

same author [111]. Object headers and the organization of data and pointers within objects are

52

4.2. HARDWARE-IMPLEMENTED GARBAGE COLLECTION

both specified by the architecture. This simplifies collection operations, such as distinguishing

pointers from data, but makes the system less flexible and complicates supporting weakly typed

languages which are widely used in embedded systems.

Meyer implements the collector as a microprogram. But compared to using dedicated hard-

ware state machines, microprogrammed devices are often slower as they must load microcode

from memory. The collector also uses locks to prevent the processor from accessing memory

locations that are loaded in the collector’s registers. These locks introduce pauses that are unde-

sirable in real-time systems, even if the duration of the pause is bound. Finally, the collector uses

a Baker-style read barrier that marks pointers being loaded into the roots. However, the barrier

is triggered more frequently at the beginning of a collection cycle, so during this time the program

cannot progress its work much. This problem is similar to the issue with the Pauseless collector

(see Section 4.1.1) which makes it difficult to schedule real-time programs on these systems.

4.2.4 Stanchina and Meyer’s Mark-Compact Garbage Collector

Stanchina and Meyer modified Meyer’s system (see Section 4.2.3) to use mark-compact instead of

copying [167]. The new system relies on temporary handles to redirect memory accesses while

compacting, so loads and stores require two memory operations in the worst-case to be completed.

The collector is still implemented as a microprogrammed hardware coprocessor, but the change

reduces memory overheads by factors of 3-6.

A collection cycle has three stages. Reachable objects are marked during the marking stage

and pointers are replaced by handle references. Objects are copied during the compact stage

as usual. Cleanup is the third stage of the collection cycle during which handle references are

replaced by object addresses. However, it is hard to estimate the number of references that

are updated during cleanup, so the collector’s real-time behavior is more difficult to model. In

addition, the collector pauses the program twice during a mark-compact cycle, instead of once in

the copying collector, as the roots have to be scanned during marking and cleanup.

4.2.5 Gruian and Salcic’s Mark-Compact Garbage Collector

Gruian and Salcic proposed a concurrent mark-compact garbage collector implemented in hard-

ware [74]. The collector is deeply integrated with the Java Optimized Processor (JOP) [146].

It relies on handles to eliminate the need to update the addresses of relocated objects. Each

handle is associated with a location in memory that contains the object’s mark flag, its address in

memory and a pointer to a data structure with type information. So loads and stores from the

processor require two memory operations; first the object’s address is loaded from the handle and

then the object is accessed.

There are high memory overheads for embedded systems due to object metadata. Each allo-

cated object consumes two words of handle space and two words of header. The type information

enables the collector to exactly distinguish pointers from integers in heap memory, but this

53

CHAPTER 4. HARDWARE GARBAGE COLLECTION

strategy cannot be used to garbage collect weakly typed languages, like C, where programs can

cast arbitrary pointers to integers and vice versa. In addition, Gruian and Salcic’s collector marks

the function call stack conservatively as type information is not available in this case. Therefore,

the exact set of live objects cannot be identified statically, so it is difficult to analyze real-time

programs as discussed in Chapter 2.

The program occasionally communicates with the collector by executing commands. For

example, the root set must be provided via a command to start a garbage collection cycle. So

the user’s program must regularly pause to perform these operations. Pauses also occur when

executing read and write barriers. The program must acquire a lock on an object before performing

a memory access in case that object is being compacted. Gruian and Salcic mitigate these pauses

by interrupting the collector when it holds a lock on an object that the processor is attempting

to access. Once interrupted, the collector must restart the copy from the beginning of the object.

Thus, the collector is prevented from progressing if the processor repeatedly interrupts copying.

This makes it unclear if Gruian and Salcic’s collector is suitable for use in real-time systems and

the locks still incur 2-7 clock cycles of overhead per memory access.

4.2.6 Garbage Collection for Reconfigurable Hardware

Developers are increasingly using reconfigurable hardware, in the form of Field-Programmable

Gate Arrays (FPGA), to achieve greater performance. These devices are traditionally programmed

with hardware description languages (Verilog and VHDL) which are difficult to use. So recent

research has focused on enabling high-level languages, like C# and Java, to program FPGAs [26,

71]. But dynamic memory management is seldom used in FPGAs regardless of programming

language, so Bacon, Cheng and Shukla proposed a hardware garbage collector fully implemented

in reconfigurable logic for this specific use case [29].

The garbage collector implements a mark-sweep snapshot-at-the-beginning algorithm similar

to Yuasa’s. The heap memory is split into a set of miniheaps. Each miniheap stores objects of

the same type and is implemented using one or more RAM components from Xilinx FPGAs

know as Block RAM (BRAM) [192]. The collector is exact since each object field is stored in a

different BRAM and only the fields containing pointers are scanned during marking. In addition,

the BRAMs are truly dual-ported such that up to two memory accesses (read or write) can be

performed in the same clock cycle. The collector accesses memory using a dedicated port while

the application uses the other port, so both can operate simultaneously in every clock cycle. As a

result, the collector never pauses as long as the allocation rate does not exceed the collection rate.

Bacon, Cheng and Shukla show that the collector is hard real-time. However, the number

of miniheaps and the object types must be known statically before the hardware is synthesized.

The size of object fields does not always map well to BRAMs which are of fixed size, so there can

be fragmentation. Also, dual-ported memories are uncommon in embedded systems since they

incur high overheads as will be discussed in Chapter 9. In summary, Bacon, Cheng and Shukla’s

54

4.3. SUMMARY

garbage collector is suitable for reconfigurable hardware applications, but it is difficult to use in

general-purpose embedded systems due to its limitations and reliance on FPGA features.

4.3 Summary

Hardware has been used in the pursuit to optimize the performance of garbage collectors. Previ-

ous proposals can be broadly classified as either hardware-assisted or hardware-implemented

depending on whether a small part or the majority of the collector is in hardware respectively.

Hardware-assisted collectors are often flexible as the majority of the algorithm is in software and

can be adapted depending on the application’s needs. In contrast, hardware-implemented collec-

tors offer optimization opportunities using hardware that are simply not available to software

collectors. However, these collectors may limit the machine’s general-purpose capabilities. We

consider that this perception arises because hardware-implemented collectors have traditionally

been used alongside specialized or esoteric computer architectures instead of RISC machines.

The main features of the hardware-assisted and hardware-implemented collectors surveyed

in this chapter are summarized in Table 4.1. The majority of the proposals in the literature

are intended for large computer systems that have different needs and aims compared to small

embedded devices. Therefore, the collectors rely on features that are rarely available in the

embedded context, such as deep cache hierarchies and virtual memory. This also explains why

only one of the hardware collectors, i.e. Schoeberl and Puffitsch’s, is intended for hard real-time

systems and has been incorporated in a formal timing analysis; the other collectors can only be

considered soft real-time at best.

The majority of hardware collectors surveyed use rigid techniques to distinguish pointers

from data words. These cannot be used with weakly typed programming languages, such as C and

C++. Our main motivation is also to enable the use of garbage collected languages efficiently. But

we focus on embedded systems where the vast majority of existing software is written in C or C++.

Therefore, hardware garbage collectors must enable compatibility with these older technologies

to at least some extent. In addition, garbage collectors, whether in hardware or software, must be

integrated into a complete processing system with I/O ports, interrupts, exceptions, etc. However,

these practical considerations are rarely discussed in the hardware garbage collection literature.

Finally, most of the collectors reviewed introduce pauses despite using hardware. The pauses

in hardware-assisted collectors occur because part of the collector is still implemented in software,

so the user’s program must be blocked to run collection operations or to interface with the

hardware. In contrast, the pauses in hardware-implemented collectors are related to root marking

and read/write barriers. They are due to the integration between collector and processor that often

relies on locks or arbitration mechanisms which are inefficient. As a result, existing hardware

garbage collectors incur performance overheads and are difficult to use in real-time systems.

55

CHAPTER 4. HARDWARE GARBAGE COLLECTION

B
asic

A
lgorithm

A
cceleration

T
ype

B
arrier

Target
System

D
iscussed

in
Section

Pauseless
M

ark-com
pact

A
ssisted

(barrier)
H

ybrid
a

Server
4.1.1

Joao
et

al
H

ybrid
b

A
ssisted

(count
update)

Softw
are

Server
4.1.2

M
aas

et
al

M
ark-sw

eep
A

ssisted
(m

arking
and

sw
eeping)

Stop-the-w
orld

Server
4.1.3

Schoeberland
P

uffitsch
C

opying
A

ssisted
(object

copying)
Softw

are
E

m
bedded

4.1.4

N
ilsen

and
Schm

idt
C

opying
Im

plem
ented

H
ardw

are
Server

4.2.1
A

ctive
M

em
ory

P
rocessor

H
ybrid

c
Im

plem
ented

U
nclear

U
nclear

4.2.2
M

eyer
C

opying
Im

plem
ented

H
ardw

are
E

m
bedded

4.2.3
Stanchina

and
M

eyer
M

ark-com
pact

Im
plem

ented
H

ardw
are

E
m

bedded
4.2.4

G
ruian

and
Salcic

M
ark-com

pact
Im

plem
ented

H
ardw

are
E

m
bedded

4.2.5
B

acon,C
heng

and
Shukla

M
ark-sw

eep
Im

plem
ented

H
ardw

are
F

P
G

A
4.2.6

Table
4.1:C

om
parison

ofhardw
are

garbage
collection

algorithm
s.

aR
ead

barrier
is

accelerated
using

an
ISA

instruction,but
the

barrier
functionality

itselfis
im

plem
ented

in
softw

are.
bR

eference
counting

and
tracing.

cR
eference

counting
and

m
ark-sw

eep.

56

Part II

Integrated Hardware Garbage
Collection

57

C
H

A
P

T
E

R

5
DESIGNING AN INTEGRATED HARDWARE GARBAGE COLLECTOR

Garbage collection has three limitations that must be overcome before it can be used in real-time

embedded systems. First, the collector must have low run-time overheads. Second, it must have

low memory overheads as embedded devices are often resource-constrained. And third, long

and unpredictable pauses must be avoided to show that the collector allows the system to meet

real-time requirements. Existing garbage collectors address one or two of these limitations at the

expense of the others.

Hardware garbage collectors excel at reducing performance and memory overheads. These

collectors have accelerators that run key operations more efficiently than software, such as read

and write barriers. The collection hardware is often tightly integrated with the processor to

mitigate coordination overheads between the two components. In addition, collection operations

are performed in the background by dedicated hardware, so the processor is freed up to run the

user’s program. However, existing hardware collectors are not hard real-time and their timing

properties are difficult to analyze formally.

Some specialized software garbage collectors reviewed in Chapter 3 are hard real-time. These

algorithms are carefully designed so that the run-time of operations, such as loads, stores and

allocations, are bound by a small constant. In addition, the collectors are supplemented by a

formal real-time analysis to ensure that a share of the processor’s time is reserved for the program.

So the system’s timing deadlines are always met, even in the worst-case, because unpredictable

pauses are eliminated. But these hard real-time garbage collectors implemented in software

incur high performance and memory overheads, are difficult to use and have undesirable side

effects like increasing event handling latencies.

In this chapter, we present the high-level design of a garbage collector suitable for embedded

systems. Concrete implementation details of this design are discussed later in Chapter 9. The

59

CHAPTER 5. DESIGNING AN INTEGRATED HARDWARE GARBAGE COLLECTOR

STORE

t0

Memory
Operation

Memory
Cycle

UNUSED

t1

LOAD

t2

LOAD

t3

UNUSED

t4

(a) Some memory cycles are unused in processors without the IHGC.

STORE

t0

Memory
Operation

Memory
Cycle

GC

t1

LOAD

t2

LOAD

t3

GC

t4

(b) Processors with the IHGC perform garbage collection whenever the
memory is not used for instruction execution.

Figure 5.1: In conventional systems without the IHGC, many memory cycles remain UNUSED
as the processor does not need them for instruction execution (LOAD and STORE). The IHGC
takes advantage of these UNUSED memory cycles, that would otherwise be wasted, to perform
garbage collection operations (GC) in the background independently from the processor. We call
this interleaving.

collector was originally proposed by David May [108] and later adapted by Ed Nutting [127]. We

further refine the design in this thesis and discuss the most important design choices. We also

consider how techniques from hard real-time and hardware garbage collection research can be

combined to strike a balance between performance, memory and pause requirements.

5.1 System Overview

Embedded processors typically use a fraction of all available memory cycles to fetch instructions

and execute loads or stores. But as we will discuss in Chapter 7, about 20-30% of memory cycles

remain unused. We present an Integrated Hardware Garbage Collector (IHGC) for hard real-time

embedded systems that takes advantage of these spare memory cycles, that would otherwise be

wasted, to run collection operations, which are mostly dependent on accessing memory. Thus, our

design automatically interleaves memory accesses from the processor with collection operations,

as shown in Figure 5.1. Garbage collection operations are performed only when the processor

does not use the memory for instruction execution, so the IHGC does not steal memory cycles

from the processor or incurs performance penalties for the user’s program.

The IHGC implements a tracing algorithm fully in the hardware as a small state. It runs in

the background independently from the processor although both components are tightly coupled

as shown in Figure 5.2. The IHGC has read-only access to the register file to obtain the root

pointers for marking. The processor has access to the collector’s state to efficiently perform

60

5.2. POINTER AND DATA TYPES

Register File

Processor
Pipeline

Garbage
Collector

Directory Main Memory Shared memory
bus

Private bus

Figure 5.2: Overview of an IHGC system.

memory accesses in the hardware in a similar fashion to Meyer’s proposal [113]. The IHGC relies

on the use of address indirection through handles. A special memory that we call a directory

stores metadata for each handle, while the main memory holds the program’s data. The collector

operates concurrently with the processor and access to both memories is provided via a shared

memory bus. This ensures that the user’s program is not paused by the collector when fetching

instructions and executing loads or stores. Pauses only occur when the allocation rate exceeds

the collection rate (exhausting all the free memory), but even these pauses can be eliminated by

using static real-time analysis methods, which we will discuss in Chapter 6.

5.2 Pointer and Data Types

The IHGC uses exact garbage collection as it distinguishes pointers from data using type informa-

tion. Every word in memory and the registers has a 1-bit tag that indicates whether it contains

a pointer or data value. Without the type information, the collector would be conservative by

assuming that a pointer is any word in memory whose value corresponds to the address of an

object. As explained in Section 2.6, conservative collectors suffer from pointer aliasing problems,

so they do not work well alongside compaction and their real-time behavior is difficult to analyze

statically.

Programs running in a system equipped with the IHGC cannot directly manipulate tags.

Pointers can only be obtained by allocating memory using the processor’s newm instruction or

copying an existing pointer. The IHGC type tags are realized as extra tag bits, so they incur low

memory overheads as discussed in Section 2.6. This mechanism has four advantages:

1. The collector is fast and simple as there is no need to encode type information in type maps

that are parsed either in hardware or with software assistance.

61

CHAPTER 5. DESIGNING AN INTEGRATED HARDWARE GARBAGE COLLECTOR

Handle
Pointer

Offset Address

Directory

Size Mark Deep List

+ Allocated object

Free Memory

Figure 5.3: Address resolution for a memory access from the processor.

2. The IHGC is more flexible than collectors using pointer and data partitions within objects

because the partition’s encoding is not hard-coded in the hardware.

3. The IHGC maintains compatibility with standard integer types. The alternative is to steal

a bit from the processor’s natural word size, e.g. encode the type in bit 0 in a 32-bit machine,

but the system foregoes compatibility with standard integer types because the range of

integers that can be represented in a word is reduced.

4. The IHGC captures type information at run-time using the tag bits as the program allocates

memory and links its data structures using pointers. Therefore, our collector is mostly

compatible with weakly typed languages, such as C and C++. Some minor caveats are

discussed in Chapter 8.

Type tags also prevent programs from constructing pointers to arbitrary memory locations.

So tags guarantee the integrity of pointers and have important implications for security and

reliability. For example, process isolation can be easily enforced because a process cannot access

arbitrary objects that belong to another process if it does not hold valid pointers referencing them.

In summary, the tags have benefits that are hard to achieve without hardware support.

5.3 Directory

In addition to having a tag, pointers in the IHGC are conceptually split into handle and offset.

The handle uniquely identifies the referenced object and is an index into a fast directory memory.

The offset is the byte index within the object that the pointer refers to. For each object, the

directory has a metadata record that contains the object’s size and its base address in physical

memory together with maintenance information for the garbage collector (see Section 5.4). In

the simplest case, accessing a word of memory requires the processor to load the object’s base

address from the directory using the pointer handle. Then, this is added to the pointer offset to

resolve the physical address as shown in Figure 5.3. Finally, the memory access can proceed.

Programs running on the IHGC system never operate directly on physical memory addresses.

The IHGC effectively enforces an indirection through the directory using handles. This is fully

62

5.4. GARBAGE COLLECTOR

implemented in hardware and is transparent from the programmer’s point of view. There are

three main benefits with this scheme:

1. The address indirection reduces garbage collection compaction work. Without this, collectors

are required to update pointers that refer to relocated objects because their physical memory

address has changed. By using indirection through handles, the collector only needs to

update the object’s physical memory address in the directory. This simplifies the collection

algorithm, which in turn facilitates the worst-case run-time analysis needed for real-time

systems.

2. The metadata in the directory can be leveraged to implement hardware safety checks in

parallel with memory accesses. For example, out-of-bounds accesses are caught without

run-time or code overheads by comparing the pointer offset with the object’s size. Previous

studies show that supporting similar checks in software for C programs usually incurs

run-time overheads above 10% and code size overheads of 20-90% [97, 121, 139].

3. Storing the object metadata in a single location, such as the IHGC’s directory, helps reduce

duplication and memory overheads. This metadata is essential for safety operations like

bounds checks. The alternative to maintaining it in a central location is to associate

metadata with every pointer in memory. This kind of pointer is known as a fat pointer

because the space requirements for each pointer increase by a factor of 2 to 4 depending on

the implementation [73, 191]. As a result, fat pointers incur memory overheads of 8-200%,

which is a significant cost for constrained embedded devices [97, 139].

The use of the handle indirection also has two perceived disadvantages. First, the directory

incurs a fixed memory overhead to store the object metadata, but this is comparable or lower than

the overhead introduced by explicit memory managers and other real-time garbage collectors

as will be discussed in Section 7.4.4. And second, it is often considered that indirection through

handles imposes high performance overheads because the directory must be read before accessing

the memory. But implementing the indirection in hardware using the techniques explained

in Chapter 9 eliminates any performance overhead. As a result, the advantages of the handle

indirection outweigh the benefits for the IHGC.

5.4 Garbage Collector

The IHGC is a tracing mark-compact collector. Its operation relies on three metadata items per

object that are stored in the directory: the list value that holds a pointer handle and is used to

chain directory records into linked lists, the mark flag which signals that the object is live during

a collection and a deep flag that is set if a pointer has been stored into the object. In addition, the

first word in main memory of every allocated object is a header that contains the object’s handle.

63

CHAPTER 5. DESIGNING AN INTEGRATED HARDWARE GARBAGE COLLECTOR

Scan
Root

Check
& Mark

Root

Pop
Next

Object

Scan
Object
Word

Check
& Mark
Pointer

Load
Object

Info

Read
Word

Clear
Word

Zero
Word

Write
Word

Mark Roots Mark Objects Compact

Figure 5.4: Simplified view of the IHGC state machine. Each state transition takes at most one
memory cycle to complete. State transitions are performed concurrently with the execution of the
user’s program by using interleaving.

The garbage collector is implemented using the small hardware state machine shown in

Figure 5.4. Each state transition is carefully designed so that it can be completed in a single

memory cycle. This ensures that state transitions can be easily interleaved with memory accesses

for instruction execution without pausing or stealing memory cycles from the processor as occurs

with existing hardware collectors [150]. The complete specification for the IHGC’s state machine

is included in Appendix A.

The remaining of this section describes in detail the stages in the IHGC’s cycle.

5.4.1 Mark Roots

A collection cycle always starts by marking the roots. The Scan Root state inspects every element

in the register file to extract pointers to live objects. For every root pointer found, the collector

loads the handle’s metadata from the directory and transitions to the Check & Mark Root state.

If not already marked, the handle is marked as live by setting the mark flag in its directory

record. Also, the collector inspects the handle’s deep flag to determine whether the object may

contain pointers. If the deep flag is set, then the handle is added to the next list so that it can

64

5.4. GARBAGE COLLECTOR

Root Registers
A

B

C

Marked Object

Unmarked Object

Scanned Root

Root Pending Scan

(a) Initially, none of the roots have been scanned by the collector
and all objects are unmarked.

Root Registers
A

B

C

(b) The first root register is scanned and a
pointer to A is found; the object is marked.

Root Registers

—

A

B

C

(c) The pointer to C is ’hidden’ from the
collector in an already scanned register.

Figure 5.5: Sequence of events causing the processor to ‘hide’ pointers from a concurrent garbage
collector by moving them to already scanned roots. Objects referenced by the hidden pointers
remain unmarked and are incorrectly reclaimed. The IHGC uses shadow registers to address this
problem.

be scanned in search of unmarked pointers at a later stage. The deep flag greatly reduces the

amount of work for the collector because objects that are guaranteed to not contain pointers, such

as arrays of integers, will never be scanned during marking.

As marking proceeds, a livesize counter is kept of the total amount of space that will be

used by objects that have been marked and that will be retained. This is used to optimize the

compacting process. So at the end of the mark roots stage, the livesize records the aggregated size

of all marked objects directly reachable from the roots and any objects marked as a side effect

of load instructions (see Section 5.6). In addition, the next list contains the handles of marked

objects labeled as deep.

The IHGC scans one root per memory cycle only and it operates concurrently with the

processor. It is therefore possible that reachable objects remain unmarked at the end of the

marking stage. This is because the processor might ‘hide’ pointers by moving them between the

registers. For example, the system in Figure 5.5(a) has three roots and initially all objects are

unmarked. The collector scans the first root and marks object A as shown in Figure 5.5(b). The

user’s program then moves the pointer to C to the first register and overwrites the third register

before the collector finishes marking the roots as illustrated in Figure 5.5(c). The first root is

not scanned again and object C remains unmarked even though it is reachable. To solve this

problem, a copy of every register is made before marking starts. The copies are the roots that

the IHGC scans and are never overwritten during mark roots. It is important that the root set is

65

CHAPTER 5. DESIGNING AN INTEGRATED HARDWARE GARBAGE COLLECTOR

small to ensure that all roots can be copied without pausing the user’s program or substantially

increasing hardware requirements. As a result, the IHGC’s root set consists of the processor

registers only. Other data structures, such as the function call stack and global variables, are

treated as dynamically allocated objects.

The roots can be efficiently copied in hardware using shadow registers. The register file

is equipped with two copies of every register: a main copy that the user’s program reads and

writes and a shadow. Before marking starts, the content of the main registers is written into

their corresponding shadows in parallel. The shadow registers are read by the IHGC during

the marking stage while the main registers are accessed by the user’s program as normal. This

reduces the need for coordination between processor and collector, so pauses when marking the

roots are eliminated.

5.4.2 Mark Objects

The collector starts the mark objects stage (shown in Figure 5.4) by transitioning to the Pop

Next Object state after all the processor’s shadow registers have been scanned. At this state, the

collector transitions to Scan Object Word if the next list is not empty. During this transition, the

handle at the front of the next list is popped and the address and size of its corresponding object

are loaded from the directory. Marked objects whose handle is on the next list, i.e. deep objects,

are scanned one word at a time in the Scan Object Word state. Each word from an object being

scanned is loaded from memory; the pointers found are checked and marked at Check & Mark

Pointer in the same fashion as Check & Mark Root described previously.

Marking completes when the next list is empty and all reachable objects are marked and

scanned. So the collector begins the compact stage by transitioning to the Load Object Info

state.

5.4.3 Compact

During the compact stage, the collector accesses all memory locations up to the heappoint;

the highest allocated address in memory. Marked objects are retained and copied towards the

beginning of the memory while garbage objects are reclaimed. Reclaimed memory locations are

also zeroed before joining the free memory to ensure that they does not contain pointers when

the memory is reallocated (see Section 5.5).

The header word at the beginning of each object in memory indicates the object’s handle. The

collector also uses two registers to copy objects as shown in Figure 5.6: src and dest are pointers

to the object’s old and new base addresses respectively. Initially, both registers are set to the

lowest memory address; the header of the first object in memory. Each transition of the Load

Object Info state uses the header to locate the object’s metadata in the directory. At this point,

the collector performs either of three operations:

66

5.4. GARBAGE COLLECTOR

dest

src heappoint

Allocated Object Garbage Object Free Memory

(a) Memory and IHGC pointers at the beginning of the compact stage.

dest

dest src heappoint

(b) Marked objects that do not need to be relocated are skipped. Garbage objects
are reclaimed and overwritten with marked objects or zeroed.

dest

dest src heappoint

(c) Some marked objects are copied from their previous address at src to a new dest
location.

dest dest

srcheappoint

(d) Allocated objects are compacted at one end of memory at the end of the collection
cycle. The heappoint register is changed to reference the highest allocated address
in memory.

Figure 5.6: Operation of the IHGC compact stage.

67

CHAPTER 5. DESIGNING AN INTEGRATED HARDWARE GARBAGE COLLECTOR

1. The object at src is marked and src = dest as shown in Figure 5.6(a). The object is retained

and its mark flag is cleared in the directory in preparation for the next collection cycle. The

src and dest pointers are both increased by the object’s size.

2. The object at src is unmarked, so it is reclaimed by adding its handle to the front of a free

list of handles. The src pointer is increased by the garbage object’s size, but dest remains

unchanged as shown in Figure 5.6(b). Memory from reclaimed objects is either overwritten

later with live objects or the collector immediately starts zeroing it by transitioning to Zero

Word. The collector decides whether zeroing is required by comparing the object’s address

with the livesize as explained below.

3. The object at src is marked, but src 6= dest as shown in Figure 5.6(c). The object is retained,

its mark flag cleared and copying from src to dest starts immediately by transitioning to

Read Word.

The compact stage terminates when src = heappoint. The heappoint is set to the dest, the

highest allocated address in memory, as shown in Figure 5.6(d). The IHGC is now ready to start

a new collection cycle.

A live object is copied from src to dest one word at a time and its old locations, i.e. at src, are

zeroed if needed. Copying for an object starts at the Read Word state. Initially, the index register

is set to the first word to copy and a size register indicates the object’s size in words. For example,

the system shown in Figure 5.7(a) has a garbage object A followed by two live objects B and C.

The IHGC is preparing to overwrite A’s locations with B’s contents, so index is set to 0 and size is

1, i.e. A’s size without including the header. At Read Word, the collector loads the next word to

be copied, i.e at address src + index, into a buffer register and transitions to either of two states

depending on whether zeroing is required:

1. If src + index < livesize, the word’s old location does not need to be zeroed because it will be

overwritten later when other objects are compacted, so the collector transitions to Write

Word. In the example, B’s old header will be overwritten with C’s contents, so the collector

state is Write Word in Figure 5.7(b).

2. If src + index ≥ livesize, the word’s old location will not be overwritten with live objects as

the compact stage proceeds, so the collector transitions to Clear Word to zero the word at

src + index before moving on to Write Word (see Figure 5.7(d)).

The collector transitions from Write Word to Read Word: it stores the word at buffer into the

new memory location, i.e. dest + index, and increments index as shown in Figure 5.7(d). The

object is fully copied when the state is Read Word and index = size + 1 as in Figure 5.7(f), so the

collector transitions to Load Object Info to process the next object in memory.

68

5.4. GARBAGE COLLECTOR

A’s Header

Memory

dest index
0x99999999

B’s Header indexsrc

0x11111111

C’s Header

0x00000000heappoint

0x00000000

0x00000000

0x00000000

1 word

GC Registers

Size:
-Buffer:

Read WordState:
3 wordsLivesize:

Garbage Word

Live Word

Free Word

(a) Initially, size indicates B’s size and index is 0 while
src and dest contain B’s old and new base addresses.

A’s Header

Memory

dest index
0x99999999

B’s Header indexsrc

0x11111111

C’s Header

0x00000000heappoint

0x00000000

0x00000000

0x00000000

1 word

GC Registers

Size:
B’s HeaderBuffer:
Write WordState:

3 wordsLivesize:

(b) The word at src + index is not zeroed, so load it
into buffer and transition to Write Word.

B’s Header

Memory

dest
0x99999999 index
B’s Headersrc

0x11111111 index
C’s Header

0x00000000heappoint

0x00000000

0x00000000

0x00000000

1 word

GC Registers

Size:
-Buffer:

Read WordState:
3 wordsLivesize:

(c) The first word is copied and the index is incre-
mented.

B’s Header

Memory

dest
0x99999999 index
B’s Headersrc

0x11111111 index
C’s Header

0x00000000heappoint

0x00000000

0x00000000

0x00000000

1 word

GC Registers

Size:
0x11111111Buffer:
Clear WordState:

3 wordsLivesize:

(d) The word at src + index needs zeroing, so load it
into buffer and transition to Clear Word.

B’s Header

Memory

dest
0x99999999 index
B’s Headersrc

0x00000000 index
C’s Header

0x00000000heappoint

0x00000000

0x00000000

0x00000000

1 word

GC Registers

Size:
0x11111111Buffer:
Write WordState:

3 wordsLivesize:

(e) The word at src + index is zeroed and the collector
transitions to Write Word.

B’s Header

Memory

dest
0x11111111

B’s Headersrc index
0x00000000

C’s Header index
0x00000000heappoint

0x00000000

0x00000000

0x00000000

1 word

GC Registers

Size:
-Buffer:

Read WordState:
3 wordsLivesize:

(f) The second word is copied and the index is incre-
mented.

Figure 5.7: An example system with one garbage object A stored at the start of memory followed
by two live objects B and C. During the compact stage, the IHGC overwrites A with B’s contents
and zeroes the old locations from B that will not be overwritten with C’s contents.

69

CHAPTER 5. DESIGNING AN INTEGRATED HARDWARE GARBAGE COLLECTOR

A’s Header

Memory

src
dest

0x88888888 index
0x99999999

B’s Header

0x00000000heappoint

0x00000000

0x00000000

0x00000000

2 words

GC Registers

Size:
Zero WordState:

1 wordsLivesize:

Garbage Word

Live Word

Free Word

(a) Initially, size indicates A’s size, src its base address
and index is the index of the first word to zero.

A’s Header

Memory

src
dest

0x00000000

0x99999999 index
B’s Header

0x00000000heappoint

0x00000000

0x00000000

0x00000000

2 words

GC Registers

Size:
Zero WordState:

3 wordsLivesize:

(b) Each state transition from Zero Word zeroes the
word of memory at src + index and increments index.

A’s Header

Memory

dest
0x00000000

0x00000000

B’s Headersrc index
0x00000000heappoint

0x00000000

0x00000000

0x00000000

2 words

GC Registers

Size:
Load

Object Info
State:

1 wordsLivesize:

(c) The collector transitions to Load Object Info as
no further locations within the former A need to be
zeroed.

Figure 5.8: An example system with one garbage object A stored at the start of memory followed
by a live object B. The collector zeroes the last two words of A using the Zero Word state as they
are not overwritten with live objects.

It is possible that memory locations from garbage objects are not overwritten by live objects

during the compact stage. The collector zeroes these locations by transitioning to the Zero Word

state from Load Object Info when an unmarked object is found. Initially, src and size contain

the base address and size respectively of the garbage object while index indicates the index of

the first word that needs to be zeroed. For example, the system in Figure 5.8(a) shows a garbage

object A stored at the start of memory followed by a marked object B. A’s first word does not

need to be zeroed as it will be overwritten with B’s contents, so index = 1. Each subsequent state

transition from Zero Word zeroes the word at src + index and increments index (see Figure 5.8(b)).

No further locations within the garbage object need to be zeroed when index = size + 1, so the

collector transitions back to Load Object Info as illustrated in Figure 5.8(c).

5.5 Memory Allocation

Programs allocate objects using the processor’s newm instruction. Objects allocated during a

collection cycle have their mark flags set immediately; otherwise, they may not be retained, for

example, if the allocation occurs when the collector is at the compact stage. Memory allocations

70

5.6. MARKING ON LOAD AND MEMORY ACCESS REDIRECTION

are completed in one memory cycle if there is enough memory and handles to satisfy the request.

Allocations are simple because free memory is always clustered at one end of the memory space.

Therefore, the system only needs to pop a handle from the free list, increment the heappoint by

the requested amount of storage space and initialize the object’s header. Newly allocated objects

are guaranteed to be initialized to zero as a result of compacting. In addition to preventing the

leak of sensitive information, zeroing is essential to the IHGC’s correct operation because it clears

the pointer tags. Otherwise, newly allocated objects might contain pointers with handles that

have already been reclaimed.

Allocations cause pauses when there is insufficient space or handles to satisfy a request. The

user’s program is paused until enough resources are reclaimed to fulfil the allocation. These

pauses may last up to two collection cycles in the worst-case (see Section 6.1). However, we can

ensure that even these pauses are completely eliminated in real-time programs by using the

analysis presented in Chapter 6.

5.6 Marking On Load and Memory Access Redirection

The IHGC operates concurrently with the processor, so it must prevent reachable objects from

remaining unmarked during the mark stage. The IHGC’s design is conceptually similar to Baker’s

read barrier [32]: pointers loaded into the root registers are processed for marking. So references

to unmarked objects are never written into already marked and scanned objects, i.e. shaded black.

The IHGC implements this coordination mechanism fully in hardware within the processor’s

pipeline. Pointers read from memory when executing load instructions are immediately written

back to the register file without stalling subsequent instructions. The pointer is also processed for

marking within the pipeline, but this is performed in the background outside the load instruction’s

critical path. The IHGC’s state machine is stopped for the duration of the load instruction and

while marking is performed, so traps, locks or interrupts common in other hardware collectors

are not required [52, 74, 112, 113, 150, 167]. As a result, the coordination between the IHGC and

the processor while marking is efficient and never pauses the user’s program.

During the compact stage, it is possible that the processor accesses an object that is currently

being compacted. The memory access must be redirected to the correct location or register where

the word is stored; otherwise, the contents of the object and the registers could become inconsis-

tent. Logic in the pipeline addresses this problem by performing memory access redirections. To

access a word of memory, the processor loads the object’s metadata from the directory using the

pointer handle. Simultaneously, the index to access within the object is computed by adding 1

to the pointer offset; this accounts for the header word at the beginning of the object. Then the

processor uses the collector’s state to find the correct location to access. There are four possible

resolutions for the memory access redirection as illustrated in Figure 5.9:

1. The collector has not copied the word accessed yet (offset + 1 > index). So the location to

71

CHAPTER 5. DESIGNING AN INTEGRATED HARDWARE GARBAGE COLLECTOR

Memory

Headerdest
0x00000000

index
offset

Headersrc

0x00000000

0x11111111index
0x22222222 offset

3 wordsSize:

GC Registers

-Buffer:
-State:

Word Copied

Word Pending Copy

Accessed Word

(a) The word has not been copied yet.

Memory

Headerdest
0x00000000 offset

index

Headersrc

0x00000000 offset
0x11111111index
0x22222222

3 wordsSize:

GC Registers

-Buffer:
-State:

(b) The word has already been copied.

Memory

Headerdest
0x00000000

index offset

Headersrc

0x00000000

0x11111111index offset
0x22222222

3 wordsSize:

GC Registers

-Buffer:
Read WordState:

(c) The word will be copied next.

Memory

Headerdest
0x00000000

index offset

Headersrc

0x00000000

0x11111111index offset
0x22222222

3 wordsSize:

GC Registers

0x11111111Buffer:
Clear WordState:

(d) The word is currently being copied.

Figure 5.9: There are four possibilities when redirecting a memory access from the user’s program
to a word in an object being compacted. The offset is the pointer’s byte offset to access within the
object. src, dest, and index are the IHGC’s registers used during the compact stage as described
in Section 5.4.3.

72

5.7. ALTERNATIVE IHGC DESIGNS

access is src + offset + 1; the object’s old address must be used as the base (see Figure 5.9(a)).

2. The collector has already copied the word accessed (offset + 1 < index). So the location

to access is dest + offset + 1; the object’s new address must be used as the base (see

Figure 5.9(b)).

3. The word accessed will be copied next. This occurs when offset + 1 = index and the collector’s

state is neither Clear Word nor Write Word i.e. the copy word operation has not started.

So the location to access is still src + offset + 1; the object’s old address must be used as the

base (see Figure 5.9(c)).

4. The word accessed is currently being copied (offset + 1 = index) and the collector’s state

is either Clear Word or Write Word. So the memory access must be performed on the

collector’s buffer register which temporarily holds the value being copied (see Figure 5.9(d)).

The clear benefits of the IHGC is that memory access redirection and marking on load are

fully transparent from the program’s point of view and do not incur any code size overheads.

Additionally, implementing the mechanism in an embedded system requires adding little extra

logic to the pipeline as discussed in Chapter 9. Pauses or performance penalties are not introduced,

so real-time analysis with the IHGC is simplified. In contrast, existing collectors normally use

traps, locks or other synchronization mechanisms to enforce an ordering on collection operations

and the program’s execution; these usually cause pipeline stalls and are described as read and

write barriers.

5.7 Alternative IHGC Designs

Garbage collectors have an extremely wide design space, so we explored many other alternatives

with various tradeoffs. We describe and consider the advantages of some of these designs for the

sake of completeness and for future research.

5.7.1 The Collection Algorithm

The choice of collection algorithm has important implications in terms of overheads and real-time

properties as discussed in Section 2.1.3. A clear alternative to mark-compact is reference counting.

It has the advantage that objects can be reclaimed immediately after they are found dead, but it

cannot reclaim data structures forming cycles. In addition, garbage objects may trigger a long

chain of counter update operations. Chang used reference counting in combination with mark-

sweep to address some of these problems in a real-time system [46–48]. However, his collector

suffers from fragmentation and its real-time analysis requires difficult to get information about

the objects forming cycles.

73

CHAPTER 5. DESIGNING AN INTEGRATED HARDWARE GARBAGE COLLECTOR

Mark-sweep is a simpler alternative to mark-compact which could substantially reduce the

complexity of hardware implementations. For example, the IHGC’s memory access redirection

and directory would not be needed. But real-time programs do not tolerate problems like fragmen-

tation. Therefore, objects must be allocated within fixed-size blocks as in the Treadmill [31] or

Siebert’s collector [159–164]. Unfortunately, these collectors place restrictions on the programmer

and cause overheads.

Copying algorithms do not suffer from fragmentation and have been widely used in real-time

systems. These collectors require a single pass and their worst-case run-time is proportional

to the amount of live memory. In contrast, mark-compact collectors require at least two passes

and their worst-case run-time is proportional to the memory size. Therefore, the run-time

of copying collectors is easier to analyze compared to mark-compact. Unfortunately, copying

collectors have higher memory overheads than mark-compact in the average-case, although not

the worst-case as shown by Schoeberl [147]. Furthermore, read and write barriers in copying

algorithms often require multiple memory accesses because loads and stores must be redirected

between semispaces. This results in increased complexity and overheads making such collectors

unattractive for hardware implementations. For these reasons, we have chosen mark-compact

instead of reference counting, mark-sweep or copying.

5.7.2 Mark Roots

The mechanism to efficiently copy the roots in the IHGC can be difficult to realize in hardware as

the number of registers increases. So we considered alternative root marking designs that do not

require a copy. The simplest solution is to atomically mark the roots as is implemented in many

existing garbage collectors [52, 74, 124, 145, 167, 195]. The obvious drawback is that the user’s

program must be paused for the full duration of the root marking operation. For this reason,

previous collectors implement techniques to bound the duration of pauses when marking the

roots, for example, by enforcing read or write barriers when accessing the function call stack [113].

But despite being short, the pauses can complicate the system’s real-time analysis.

Siebert’s solution for the root marking problem also eliminates the need to copy the root

registers [159–164]. Siebert’s collector has a single root pointer and every pointer in the registers

must also exist in memory. Scanning the single root is simple in hardware and does not incur

program pauses, but there are two main disadvantages with this approach. First, the user’s

program needs to cooperate with the collector to ensure that all references in the roots are

correctly backed up in memory. The copies could be, at least partly, maintained by the compiler,

but this still places tedious and error-prone memory management burdens on the programmer

that we are hoping to eliminate using garbage collection. Second, there is a performance cost

because the program must constantly ensure that the references are backed up in memory.

We considered marking pointers when the user’s program moves them between registers

during root marking. This eliminates the need to make a copy of the complete root set before mark-

74

5.7. ALTERNATIVE IHGC DESIGNS

ing because the program cannot ‘hide’ pointers from the collector as explained in Section 5.4.1.

However, marking on register-to-register move instructions reduces the spare memory cycles

for collection operations. This can delay the completion of a collection cycle and cause pauses if

memory is not reclaimed sufficiently fast. Another problem occurs when integrating the IHGC

with existing computer architectures. Instruction sets, such as ARMv7-M and RISC V, do not

distinguish between pointers and data words. Therefore, arithmetic, logic and other instructions

are used indiscriminately regardless of the operand’s type. These instructions occasionally re-

ceive pointer operands, so they move pointers between the registers. This complicates real-time

analysis as it is unclear which instructions, that do not normally perform memory operations,

consume memory cycles as a result of marking. The memory cycles are no longer available to

perform collection operations, so it is harder to estimate tight upper bounds on the collector’s

run-time.

Compared with the alternative root marking strategies, the IHGC’s required copy does not

incur any pauses. More importantly, the IHGC’s root scan operation is incremental and requires

minimum interaction with the processor, so the collector’s real-time analysis is simplified. Also,

most modern RISC architectures, such as ARMv7-M and RISC V, have a small register set that

does not exceed 16 or 32 registers. So efficiently copying all registers using a strategy like shadow

registers incurs minor hardware overheads. For these reasons, we decided against using an

alternative root marking technique.

5.7.3 Marking On Store

The IHGC marks pointers when they are loaded into the registers to prevent reachable objects

from remaining unmarked. The alternative approach is to use write insertion barriers such

as Brooks’. Instead of marking on load, the collector marks pointers as they are stored into

memory. This prevents references to unmarked objects from being written into already marked

and scanned objects. Before ending the marking stage, the collector must also repeatedly scan

the roots until no unmarked objects are discovered. In the worst-case, the collector scans the

roots once for every reachable object, but this is extremely unlikely. Unfortunately, estimating a

tighter upper bound necessary for real-time analysis is difficult.

Another strategy considered is Yuasa’s write barrier that enforces a snapshot-at-the-beginning

invariant. As described in Section 3.2.4, Yuasa’s write barrier loads the location that is about

to be overwritten during a store operation. If the loaded value is a pointer, it is processed for

marking. However, this operation complicates the processor pipeline’s hardware because a store

actually requires two memory accesses. The write barrier also causes stalls when executing a

continuous sequence of memory access instructions. This is because the run-time of stores would

almost double, even when there are no dependencies between the instructions.

The IHGC’s mark on load strategy can be implemented without causing pipeline stalls

or pausing the user’s program. It also simplifies real-time analysis which is one of the main

75

CHAPTER 5. DESIGNING AN INTEGRATED HARDWARE GARBAGE COLLECTOR

objectives of this thesis. Therefore, we decided against using the alternative strategies outlined

in this section.

5.8 Summary

We presented an Integrated Hardware Garbage Collector (IHGC) that runs in the background

reclaiming memory independently from the processor. The IHGC implements a mark-compact

algorithm fully in hardware that operates whenever the processor is not accessing memory. But

it never pauses the program as its operation is split at the granularity of a memory cycle. The

IHGC uses extra tag bits to exactly distinguish pointers from data, so its real-time behavior

can be formally analyzed. In addition, memory access indirection using handles simplifies the

collector’s operation and efficiently maintains the system’s integrity using hardware within the

processor. As a result, the IHGC incurs low performance and memory overheads and it can be

shown to meet hard real-time requirements.

The main choices in the IHGC’s design were explained in this chapter. Collection algo-

rithms, such as reference counting and copying, were compared to the IHGC’s mark-compact and

discarded due to issues with hardware complexity, ease of real-time analysis or performance over-

heads. Alternative marking strategies were also analyzed and discarded due to their numerous

drawbacks.

76

C
H

A
P

T
E

R

6
HARD REAL-TIME ANALYSIS WITH THE IHGC

A novel Integrated Hardware Garbage Collector (IHGC) was presented in Chapter 5. However,

it has not yet been shown how unexpected IHGC pauses can be prevented to ensure that hard

real-time programs never miss their deadlines due to garbage collection. We address the issue

in this chapter by proposing a static analysis technique that guarantees the complete absence

of pauses. The analysis characterizes the user’s program and derives the worst-case memory

requirements to ensure that the system’s hard real-time constraints are met.

Previous research has demonstrated how software garbage collectors can be scheduled con-

currently with hard real-time programs [28, 47, 79, 92, 147]. But the IHGC is implemented

in hardware and has features, such as interleaving, that cannot be accurately modeled using

existing analysis frameworks. Therefore, we introduce a new static analysis technique to provide

hard real-time guarantees using our hardware-implemented garbage collector.

6.1 Pauses in the IHGC

The IHGC never pauses the user’s program when the processor executes load or store instructions.

Pauses only occur if memory is allocated faster than it can be reclaimed. In this case, the collector

cannot ‘keep up’ with the rate of allocation. Eventually, the system will reach an out-of-memory

condition as there is not enough free space to satisfy an allocation request. When an out-of-

memory condition arises, the execution of the newm instruction (and consequently the program) is

paused. These pauses last until the collector reclaims enough memory to fulfil the allocation. In

the worst-case, the program is paused for the duration of two collection cycles because if the last

remaining pointer to an object is eliminated after it has been marked, then that garbage object

survives the current collection cycle and is only reclaimed in the next cycle. These long pauses

77

CHAPTER 6. HARD REAL-TIME ANALYSIS WITH THE IHGC

0

5

10

15

A
llo

ca
te

d
(w

or
ds

)

0

5

10

15

G
ar

ba
ge

(w
or

ds
)

t0 t1 t2 t3 t4 t5 t6 t7

0

5

10

15

Time

C
ol

le
ct

ed
(w

or
ds

)

Figure 6.1: Timeline of memory allocated, garbage generated and memory reclaimed for a simple
system using a mark-compact garbage collector.

during allocation make real-time analysis infeasible, so our aim is to guarantee that they do not

happen unexpectedly, or better yet, that the pauses are completely avoided.

The pauses are caused by the operation of the IHGC’s underlying mark-compact algorithm.

The collector must first trace the full set of live objects before reclaiming and compacting. So

memory from multiple garbage objects joins the free memory pool at the end of the collection

cycle all together, as opposed to being reclaimed individually, immediately. For example, in the

timeline of a system shown in Figure 6.1, two objects are allocated at times t0 and t1. Both objects

are made garbage at t2, but they are only reclaimed at t4 when the collector completes a cycle.

This implies that the memory collected is less than the garbage memory shortly after an object

dies. The garbage memory only converges with that reclaimed as collection cycles are completed.

In the worst-case, the convergence delay lasts up to two full collection cycles. This reclamation

delay is illustrated in Figure 6.1 as the 10 words allocated by t1 are only collected at t4 even

though the memory was garbage after t2.

To avoid pauses, we must ensure that the system will not reach an out-of-memory condition

before the memory collected converges with the garbage generated. We achieve this by provision-

ing the system with enough memory so that allocations can be fulfilled without pauses while

the collector reclaims the next batch of garbage objects. For instance, the system in Figure 6.1

requires at least 15 words of memory to avoid pausing even though the program’s live size is

10 words. This is because the allocation at t3 happens before the garbage generated at t2 is

78

6.2. ANALYSIS OVERVIEW

reclaimed. Thus, our analysis problem is reduced to finding a safe worst-case memory size which

guarantees that out-of-memory conditions will never occur.

6.2 Analysis Overview

The IHGC interleaves collection operations with memory accesses from the processor in order to

take advantage of unused memory cycles. Interleaving ensures that the program is not paused if

the system is provisioned with enough memory to satisfy allocations while garbage is reclaimed.

So our analysis must determine the allocation rate along with the number of unused memory

cycles available to the collector during the execution of a given real-time program. From this, we

must then calculate the worst-case memory bound to guarantee that the collector has enough

time to reclaim garbage while operating during the spare memory cycles only. Such a bound

exists if the collection rate is greater than the allocation rate. Otherwise, the analysis fails to find

a memory bound and unexpected pauses can occur.

Interleaving and our static analysis guarantee that collection pauses never occur. There are no

collection operations to schedule in the software and the processor can instead be fully utilized to

execute the user’s program. This eliminates the need to consider the IHGC’s operation as another

software process to be scheduled, in contrast to most modern time-based collectors [28, 79, 92].

As a result, real-time analysis with the IHGC is simpler than with existing software collectors.

In the remainder of this chapter, we use our understanding of the problem and knowledge

about the IHGC from Chapter 5 to derive the equations of our real-time analysis.

6.3 Worst-Case Memory Requirement

Our analysis only considers systems that are in steady state. That is, the program generates as

much garbage as it allocates memory when measured over a long interval of time. The goal is to

estimate the minimum memory size that prevents pauses when executing allocation instructions.

There must be enough space to accommodate the live and garbage objects and satisfy new

allocations during the time interval that the IHGC takes to reclaim garbage.

The variables used in our formulation are outlined in Table 6.1. The program has an amount

of live memory n+ r. n is the space scanned for marking, but never relocated while compacting.

Objects that contribute to n are never reclaimed during the program’s lifetime, such as global

variables and code. The IHGC does not treat these objects differently, but we can ensure that

they are never relocated by grouping them towards the beginning of memory. For example, the

system can place the code object at address 0 at reset; assuming that the code object is always

live, it will never be relocated if the IHGC copies live objects towards 0 while compacting. In

contrast, r is the amount of live memory that can be relocated, such as temporary buffers. Also,

the program allocates at most w words of memory during a collection cycle. This memory will be

79

CHAPTER 6. HARD REAL-TIME ANALYSIS WITH THE IHGC

Variable Description

n Memory scanned during marking, but never relocated.
r Live memory that is relocated.
w Memory allocated in the time interval that it takes to complete a collection cycle.
l Live memory at the end of a collection cycle.
m Amount of memory needed to eliminate program pauses.
tgc Time taken to complete a collection cycle.
t f Memory cycles available to the collector in an execution period.
a Memory allocated during a collection cycle.

Table 6.1: Variables involved in our worst-case memory formulation.

considered live and retained because newly allocated objects have their mark flags set. So the

maximum amount of live memory l at the end of a collection cycle i is

(6.1) l = n+ r+w

We expect that at most w words of memory will be allocated once again during the next

collection cycle i+1. In addition, the memory that is garbage at the start of i+1 will only be

collected when the cycle is completed. Therefore, the worst-case amount of memory m needed by

the system to eliminate pauses during collection cycle i+1 is

(6.2) m = l+w

Substituting Equation 6.1 into Equation 6.2 to remove l we obtain

(6.3) m = n+ r+2w

The required memory m includes twice the space allocated during a collection cycle w. This is

because the memory reclaimed only converges with the garbage generated after two collection

cycles in the worst-case as explained in Section 6.1.

Our reasoning about w is similar to the one presented by Robertz and Henriksson [142].

We assume that the program allocates at most a words of memory during each execution of its

periodic task. Also, the program does not access memory for t f memory cycles in each period.

So the worst-case w is given by the space a allocated in as many t f intervals as necessary to

complete a collection cycle of length tgc or

(6.4) w = a
⌈ tgc

t f

⌉
80

6.4. TIMING MODEL FOR THE IHGC

Replacing the ceiling function in Equation 6.4 by a stronger condition and substituting for w

in Equation 6.3 we get

(6.5) m = n+ r+2a
(tgc

t f
+1

)
To resolve m, we need suitable estimates for tgc, a and t f . This is explained in Section 6.4

and Section 6.5.

6.4 Timing Model for the IHGC

We divide the IHGC’s operation in four parts that are aggregated to estimate tgc as follows

(6.6) tgc = tinit + troots + tmark + tcompact

We individually analyze each component of tgc in detail.

6.4.1 Initialization and Termination (tinit)

Each garbage collection cycle has a constant-time overhead tinit associated with initialization

and termination. During initialization, the IHGC’s hardware state machine is set up to start a

new collection cycle. When terminating, the IHGC checks failure conditions. For example, an

exception is raised if the IHGC detects that there is not enough physical memory to satisfy a

pending allocation request.

6.4.2 Mark Roots (troots)

Compared to most collectors, root marking is a simple operation in the IHGC as the root set

consists of the processor’s registers only (including any instruction and stack pointer registers).

Larger data structures, like global variables and the function call stack, are not considered as

part of the roots and are instead marked and compacted like any other heap object. In addition,

every IHGC work increment to scan the roots has a run-time of exactly one memory cycle as

explained in Section 5.4.1. Thus, root marking does not pause the user’s program.

During root marking, the IHGC scans the processor’s register file in search for pointers that

need to be marked. The mark operation is time-constant once a register is found to contain a

pointer. First, the collector uses the pointer handle to load the object’s mark and deep flags from

the directory. If the mark flag is set, then the object is already marked and no action is taken for

it. If the mark flag is unset, then it is toggled. The object’s handle is also added to the next list if

its deep flag is set; this ensures that the object is scanned later in search for pointers to other live

objects.

81

CHAPTER 6. HARD REAL-TIME ANALYSIS WITH THE IHGC

It is hard to estimate the number of registers that contain a pointer during root marking. So

we obtain a safe worst-case estimate by assuming that every register contains a pointer. This

assumption still yields a reasonable bound because the time to mark a register is very short. Also,

modern RISC architectures have few registers, usually no more than 32, so the root set is small.

Scanning and marking a pointer takes tr1 memory cycles for each register. There is also a small,

constant overhead tr2 associated with transitioning to the next part of the collection cycle. If the

processor has k registers, we get

(6.7) troots = ktr1 + tr2

6.4.3 Mark Objects (tmark)

The collector processes the next list until it is empty. At each iteration, the IHGC pops a handle

from next and loads the metadata of the corresponding object from the directory. These operations

take tm1 memory cycles per scanned object to be performed. Then, every word of memory from

that object is loaded and scanned one at a time in search for pointers at a cost of tm2 memory

cycles per word. Also, the pointers found are marked with the same mechanism used in root

marking; the operation is time-constant and takes tm3 memory cycles.

The duration of the mark stage is proportional to the number and size of live objects, but it is

also extremely dependent on the program’s behavior. For example, marking takes longer as the

number of pointers in memory increases. Therefore, our analysis relies on the program parameters

in Table 6.2 to improve our estimate of the collector’s run-time. We use this information as follows:

• The collector processes at most d deep and live objects for marking instead of all live objects.

Similarly, only s words of memory from deep objects are actually scanned during marking.

This is because the IHGC relies on the deep flag stored in the directory to avoid scanning

objects that do not contain pointers.

• The cost tm3 is only paid for each pointer in memory that is processed. So this overhead is

incurred at most p times.

Including the time tm4 required to initialize and terminate the mark objects stage of the

collection cycle we get

(6.8) tmark = dtm1 + stm2 + ptm3 + tm4

The program parameters in Table 6.2 are not essential for our analysis. It is ideal to have this

information to compute tight run-time estimates of the collection cycle. But worst-case values

can be used instead if the information is not available.

82

6.4. TIMING MODEL FOR THE IHGC

Parameter Description

p Number of pointers in live memory.
d Number of live objects that are also deep.
s Number of words allocated for live objects that are also deep.
c Number of live objects that are never relocated.
z Minimum allocation size (in words).

Table 6.2: Program parameters used to refine the estimated run-time of a collection cycle (tgc).

6.4.4 Compact (tcompact)

The collector relocates live objects at one end of the memory space and simultaneously zeroes

garbage memory. Compacting relies on the mark information in the directory and the header

word in memory that contains an object’s handle. The collector uses src and dest pointers and

sets them to the lowest memory address at the beginning of the compact part.

The IHGC must inspect every live and garbage object while compacting. It spends up to

tc1 memory cycles per object performing the following setup. The object’s metadata is loaded

using the handle in the header word at src. If the mark flag is set, then the object is live and, if

necessary, the collector starts copying it to the address referenced by dest. Otherwise, the object is

garbage and its handle is added to the free list. The collector starts zeroing the unmarked object

if it will not be overwritten by relocated live memory. Unfortunately, it is difficult to estimate the

number of garbage objects reclaimed in a collection cycle. So we derive a safe upper bound on

the total number of objects processed during compact using the information in Table 6.2. There

are c objects that are live, each of at least z words in size, using n words of memory. In addition,

there are up to m−n words of memory containing at most m−n
z objects. Therefore, there are up to

c+ m−n
z objects that the collector must process during compact, but not necessarily relocate.

We must also account for the time required to zero and copy memory. Once again, it is difficult

to tightly estimate the total run-time of these operations as we do not have detailed information

about garbage objects. But we know that it takes longer to copy a word of memory than to zero

it. Also, the amount of zeroing work decreases as copying increases, so the worst-case run-time

happens when copying work is maximized. This occurs when the collector must retain and

relocate almost the full memory m, or r+n+2w according to Equation 6.3. However, n words are

never relocated, so r+2w words of memory are copied during compact in the worst-case.

Copying a word of memory takes tc2 memory cycles. Including the time tc3 taken to terminate

the compact operation we have

(6.9) tcompact =
(
c+ m−n

z

)
tc1 + (r+2w)tc2 + tc3

Simplifying using Equation 6.3 we get

83

CHAPTER 6. HARD REAL-TIME ANALYSIS WITH THE IHGC

3b0

5b1

7b2

e init

e0

e1

e2

eexit
(a) Control Flow Graph (CFG).

1 / / Start and end constraints
2 e init = eexit = 1
3

4 / / Other constraints
5 b0 = e init + e2 = e0

6 b1 = e0 = e1

7 b2 = e1 = e2 + eexit

8

9 / / Loop bound constraints
10 0< b0 ≤ 10
11

12 / / Objective function
13 3b0 +5b1 +7b2

14

(b) Integer Linear Programming (ILP).

Figure 6.2: Control Flow Graph (CFG) and its corresponding Integer Linear Programming (ILP)
problem for a simple program with a loop.

(6.10) tcompact =
(
c+ r+2w

z

)
tc1 + (r+2w)tc2 + tc3

6.5 Static Program Analysis

The real-time garbage collection analysis presented in Section 6.3 and Section 6.4 relies on

parameters given by the program’s behavior. In this section, we describe how existing real-time

program analysis techniques can be adapted to estimate some of the required information. We

also cite the relevant literature proposing techniques to estimate parameters for which this thesis

does not provide an analysis.

6.5.1 Memory Allocated (a) and Spare Memory Cycles (t f)

The equations in Section 6.3 rely on two important parameters given by the behavior of the

program: the allocated memory a and the number of spare memory cycles t f available to the

collector. We estimate these values using an automated tool that relies on techniques similar to

those used for conventional Worst-Case Execution Time (WCET) analysis [186].

Our automated tool starts its static analysis by constructing a Control Flow Graph (CFG) of

84

6.5. STATIC PROGRAM ANALYSIS

the compiled program supplied as an input.1 A CFG is a directed graph that encodes all possible

paths that a program might execute. The nodes of a CFG represent blocks of code without

branches or branch destinations, while the edges are branches as shown in Figure 6.2(a). Each

node is associated with a coefficient that represents the cost of executing it. For example, the code

from block b0 allocates 3 words if the CFG in Figure 6.2(a) was used to calculate the amount of

memory allocated by a program a. Alternatively to calculate t f , the coefficient would indicate

that 3 memory cycles are available to the IHGC when executing block b0.

The second part of the static analysis uses Implicit Path Enumeration (IPET) to calculate a

bound for the resource usage of the program [100]. IPET derives an Integer Linear Programming

(ILP) problem by combining the flow information and coefficients encoded in the CFG [41]. The

ILP is an optimization problem consisting of an objective function and a set of constraints over the

variables used in that objective function. For example, the constraints in Figure 6.2(b) indicate

that block b0 in the loop will be executed at least once and at most 10 times. Also, the objective

function shows that blocks b0, b1 and b2 have 3, 5 and 7 spare memory cycles if this ILP was

constructed to estimate t f .

The ILP’s objective function and most constraints are constructed with a simple graph

traversal of the CFG. Each block has a term that corresponds to its coefficient times a unique

variable name; the objective function is a summation of these terms for all blocks as shown

in Figure 6.2(b). The majority of constraints relate the number of times that the edges are

followed with how often a block is executed. For example, the solution to the objective function in

Figure 6.2(b) must satisfy the constraint b1 = e0 = e1 meaning that the program must follow the

input edge e0 and output edge e1 as many times as block b1 is executed. Loop bounds are the

only constraints that are difficult to construct as the information is not readily available in the

CFG, so these bounds are either input manually by the programmer or automatically estimated

using a tool like SWEET [61].

Finally, our analysis tool solves the objective function in the generated ILP formulation

using the open-source tool lp_solve [34]. A solution for a generated ILP either maximizes or

minimizes the objective function while satisfying the associated constraints. For example, the

IHGC’s real-time analysis requires estimating the maximum value for a because it produces the

worst-case memory requirements (m) to not pause the user’s program according to Equation 6.5.

6.5.1.1 Cost Models

The coefficients from the CFG are given by a cost model. These models capture the amount (or

cost) of resources, such as time or memory, consumed by each operation in a specific system. Cost

models are often difficult to construct because they require in-depth knowledge of the system’s

microarchitecture.

1Our automated tool is based on software originally intended for static analysis of energy consumption [72]. The
source code of our tool was made available under an open-source license [10].

85

CHAPTER 6. HARD REAL-TIME ANALYSIS WITH THE IHGC

Instruction Clock Cycles

Run-time Memory

str r7, [r0, r1] 2 2
add r1, r1, #4 1 0
mov r2, #100 1 0
cmp r1, r2 1 0
Total 5 2

Table 6.3: Run-time and number of clock cycles spent in memory accesses for a block of code. This,
and instruction fetch information is used by our cost model to estimate t f .

Our static program analysis tool requires two cost models. The first estimates a by associating

each CFG node with the worst-case amount of memory allocated by its corresponding block of

code. This technique is similar to that presented in previous research [137], but alternative

analysis methods have also been proposed [105]. Our tool easily identifies blocks that allocate

memory because they contain the newm instruction.

The cost model for t f associates each CFG node with the number of unused memory cycles for

program execution or instruction fetches. The unused cycles of a block of code are given by the

difference between the run-time and the memory cycles used by that block of code. For example,

the total run-time of the instructions shown in Table 6.3 is 5 clock cycles. The code uses 2 of those

cycles to access memory while storing a word of data (str). Assuming that two instructions are

retrieved per fetch, the processor also performs memory accesses during 2 clock cycles as it needs

to fetch instructions. So the cost coefficient for the block of code in Table 6.3 is 5−2−2= 1 when

calculating t f .

Estimates for a and t f are calculated using separate CFGs with different cost models as

explained above. In addition, the ILP formulations are solved independently with lp_solve by

maximizing a and minimizing t f as this produces safe worst-case bounds for m according to

Equation 6.5. However, this may also cause overestimates because in some cases the execution

path with worst-case a does not cause a worst-case t f . For example, the worst-case a in the

program in Figure 6.1 occurs when the condition is true, but the worst-case t f occurs when the

condition is false.

6.5.2 Live Size (n, r, d, s, c)

Live size information is vital for most real-time garbage collection analysis techniques

(including ours) [28, 79, 92]. Empirical estimations are not acceptable because there is no

guarantee that the values correspond to the program’s safe worst-case requirements. Therefore,

various techniques have been proposed in the literature to statically estimate a program’s live

size with different degrees of success [5, 92, 131, 180]. But this is an inherently difficult problem

86

6.6. SUMMARY

1 if (i == 0) {
2 // Allocate memory and perform a computation
3 // that requires few memory operations
4 p = malloc(1000);
5 for (i = 0, sum = 0; i < 1000; i++)
6 sum += i;
7 } else {
8 // Execute many operations that require
9 // memory, such as copying

10 memcpy(p, q, 1000);
11 }

Listing 6.1: Program that causes an overestimate for m.

as it is undecidable.

The approach in this thesis is to assume that the programmer is aware of their program’s

memory consumption. This is generally true in real-time and critical systems design because

programmers must choose the appropriate memory size, and other hardware requirements, for

their applications. The task of identifying the program’s live size can be facilitated by conventional

software development tools like compilers that report object sizes. There are also specialized

tools, such as AbsInt’s StackAnalyzer [3], to statically estimate the function call stack size.

6.5.3 Number of Pointers (p)

The number of pointers that the IHGC processes during marking substantially impacts the

duration of a collection cycle. So it is important to statically estimate the total number of pointers

in live objects in order to calculate tight worst-case memory requirements. Compilers for strongly

typed languages, such as Java or C#, can easily determine the number of pointers in an object.

Compilers for weakly typed languages, such as C++, can also determine the number of pointers

in an object as long as the program is carefully written to only store pointers in words of pointer

type. Programmers can use this compile-time information, along with the live size, to estimate

an upper bound on the number of pointers that will be processed during a collection cycle.

6.6 Summary

We presented a real-time static analysis technique for the Integrated Hardware Garbage Collector

(IHGC). Our analysis estimates the worst-case memory size requirements to guarantee that the

IHGC will never pause the user’s program. The technique relies on the IHGC’s ability to interleave

its operations with memory accesses from the processor to complete its work. As a result, the

program is never paused if the system is provisioned with enough space to satisfy allocations

while memory is reclaimed. The processor is fully utilized to execute the user’s program without

the high performance overheads incurred by software real-time garbage collectors. Also, the

87

CHAPTER 6. HARD REAL-TIME ANALYSIS WITH THE IHGC

IHGC’s operation does not need to be considered in the process scheduling analysis of a real-

time system. This is another advantage over existing time-based real-time garbage collectors

implemented in software as their analysis is more complex.

Our technique uses information that is extracted via static program analysis. This is be-

cause the IHGC’s timing model depends on the program’s behavior. Therefore, we developed

an automated static analysis tool that uses techniques from conventional real-time analysis to

estimate essential program parameters. We also indicated other techniques from the literature

or strategies to obtain the remaining program parameters that the analysis relies on, such as the

pointer density.

The IHGC offers reliability and run-time predictability features that are extremely difficult

to achieve in software. In addition, the analysis presented is a step towards enabling the use of

modern garbage collected programming languages for hard real-time embedded systems.

88

C
H

A
P

T
E

R

7
EXPERIMENTAL EVALUATION

In this chapter we evaluate the IHGC’s design and our hard real-time analysis technique pre-

sented in Chapter 5 and Chapter 6 respectively. A simulator of the IHGC alongside a processor

implementing an existing ISA is used extensively to empirically evaluate the collector’s perfor-

mance and compare it with a conventional system that does not have the IHGC. We also apply

our real-time analysis to practical programs and verify that pauses are indeed eliminated.

Specific considerations for the implementation of a complete garbage collected system in

hardware are not discussed in this chapter. Refer to Chapter 9 for a detailed discussion on this

subject.

7.1 Evaluation Platform

Innovations in computer architecture are normally evaluated in well-established simulation

platforms that have been validated and peer reviewed by the research community. Example

simulators include Sniper [44], ZSim [144] and gem5 [35]. However, these tools are designed for

evaluating large scale, high performance systems rather than the embedded devices targeted

in this thesis. In fact, Sniper and ZSim only simulate the x86 ISA which is rarely, if ever, used

in small embedded devices nowadays. We are not aware of tools for embedded systems, so we

developed an open-source simulator in C++ to evaluate the performance of 32-bit embedded

processors with and without the IHGC [8].

We simulated the 3-stage pipeline of an ARM Cortex-M0 processor. This processor is typically

used in the hard real-time applications that we are targeting because its timing behavior is

predictable. However, it is important to highlight that the principles behind the IHGC can be

used in conjunction with other architectures, such as MIPS and RISC V, and our choice was

driven by the need to find benchmark programs to evaluate our platform.

89

CHAPTER 7. EXPERIMENTAL EVALUATION

Our simulator is timing-accurate as each instruction’s cycle count is implemented according

to the latencies stated in the ARM Cortex-M0 Technical Reference Manual [19]. The directory is

assumed to be a memory component independent from the main memory. It is sufficiently fast to

perform an address lookup followed by an address calculation, i.e. an addition, within a single

clock cycle. In contrast, the main memory takes a full clock cycle to operate. This assumption

is reasonable in the context of embedded systems as discussed in Chapter 9. A fast directory

memory ensures that the latency of store instructions remains unchanged in processors with

and without the IHGC. In contrast, the short processor pipeline causes occasional stalls when

pointers are marked during a load instruction; this is accounted for by the simulator. But these

delays can be easily eliminated at the expense of minimal extra hardware in the pipeline as

discussed in Section 5.6.

The IHGC’s tag bits are modeled as extra tag bits in our simulator as described in Section 2.6.

We assume that the system is fitted with physical registers and memory that are wider than the

processor’s native word size i.e. 33-bit words since the Cortex-M0 is a 32-bit processor. Every

access to a word in memory or the registers operates on 33 bits: one bit is reserved for the tag

and invisible from the program while the remaining 32 bits hold the regular pointer or data

value. This facilitates compiling and running existing software on our simulated platform using

off-the-shelf compilers because standard integer types are supported. Furthermore, relying on

a wider word length in embedded devices is an acceptable design choice because memories are

usually on-chip; interfacing with external memory devices, that normally have a word size which

is a multiple of 8 bits, is not a major concern.

7.2 Benchmarks

Benchmark suites, such as DaCapo and the SPEC Java benchmarks [36, 168], have been widely

used in both academia and industry to evaluate the performance of garbage collectors. These

suites are composed of programs typically found in large server and high performance systems.

But the profile of these programs is not representative of real-time or embedded applications. The

benchmarks from the Embedded Microprocessor Benchmark Consortium (EEMBC) are perhaps

the most widely used and accepted to evaluate embedded systems [60]. However, the EEMBC

benchmarks are only small kernels, instead of complete applications, that do not stress the

memory manager. In fact, there are no benchmark suites tailored to evaluating garbage collectors

in embedded systems. This is because automatic memory management, and dynamic memory

in general, is often avoided as existing memory management algorithms incur high overheads

and are mostly infeasible for real-time applications. As a result, it is difficult to find programs to

evaluate novel garbage collectors for embedded systems like the IHGC.

Since there are no benchmark suites that fit our needs, we adapted widely available open-

source software to evaluate the IHGC. The programs are grouped into three benchmark suites:

90

7.3. COMPILER AND TOOLCHAIN

BEEBS, MicroPython scripts and large C programs. The first is a subset of the Bristol/Embecosm

Benchmark Suite (BEEBS) tailored to measure the performance and energy consumption of

embedded devices [130]. BEEBS is mostly composed of small C programs that run simple numeric

operations and classic algorithms like quicksort. These benchmarks rarely use dynamic memory,

so they measure the IHGC’s overheads on memory access instructions in isolation from memory

management operations.

For the second benchmark suite, we ported MicroPython to run on our simulated system.

MicroPython is a Python interpreter for embedded devices [115] that we set up to execute scripts

from the Python Benchmark Suite [66]. We made minor modifications to the original scripts to

only use the subset of Python supported by MicroPython. The interpreter already included a

software collector, so the porting work was limited to replacing this functionality with the IHGC.1

The third benchmark suite is composed of large C programs found in real applications. These

benchmarks were partly developed by us and include:

1. Three programs from the Timing Analysis on Code-Level (TACLe) benchmarks that are

used for real-time analysis research [62]. These programs were modified slightly to use

dynamic memory instead of static allocations and to avoid floating-point arithmetic.

2. Three programs that communicate over a simulated network using the TCP and UDP

protocols, and in one instance the data is secured with the TLS protocol. We used the popular

open-source software lwIP [59] and Mbed TLS [22] to implement these benchmarks.

3. One program that benchmarks the construction of embedded graphical user interfaces,

such as those found in printers and home appliances. We developed this software using the

open-source library LittlevGL [95].

7.3 Compiler and Toolchain

All benchmarks were compiled with LLVM version 7 [102] and linked with GCC for ARM

Embedded Processors version 7.3.1 [21] while having -O2 and other optimizations enabled.

However, compiling with this toolchain was problematic because the generated code does not

differentiate between pointer and regular value types. So programs routinely execute instructions

that may compromise the IHGC’s safety and correctness. For example, executing a bitwise-or

instruction with two pointer operands may result in a new pointer being created to a memory

location that the process is not permitted to access. Therefore, the semantics of many arithmetic

and bitwise instructions from the ARMv6-M ISA [20], the instruction set implemented by the

ARM Cortex-M0, were originally changed to error when the operands are pointers. Unfortunately,

1The porting code for MicroPython along with the modified scripts from the Python Benchmark Suite are
open-source [7].

91

CHAPTER 7. EXPERIMENTAL EVALUATION

this was incompatible with the code generated by LLVM, so the restrictions were eliminated from

the simulator for the sake of this evaluation.

The IHGC does not treat the program call stack preferentially. The stack is marked and

scanned as if it were any other allocated object without considering that stale frames previously

popped off the stack are not needed by the program. So memory requirements may increase

beyond the program’s actual needs because the IHGC considers as live the garbage objects

referenced by pointers stored below the stack pointer. This is a consequence of allocating the

function call stack as a contiguous block of memory in the ARM architecture. Allocating stack

frames individually upon entering each function avoids this problem. This approach eliminates

the need to predefine stack sizes, so it improves reliability as stack overflows are eliminated. Also,

efficiently supporting individual stack frame allocations only requires minor extensions to the

architecture.

The issues discussed in this section are not limitations of our system. The problems can be

addressed by introducing minor changes to the ISA or modifying the compiler’s backend to select

the appropriate instructions when generating code for an IHGC system. This is revisited and

solutions are outlined in greater detail in Chapter 8.

7.4 Measuring Performance

In this section, we present and discuss our experimental results. Most of the benchmarks

considered are not real-time programs, so the static analysis technique presented in Chapter 6

was not used and pauses can occur. The aim is to understand the run-time performance and

memory usage of our collector as well as empirically measure pause times.

7.4.1 Characterizing Memory Cycles

The IHGC takes advantage of spare memory cycles to operate as described in Section 5.4. This

implies that the system’s performance degrades if not enough memory cycles are available for

collection operations. In this case, the system effectively allocates memory at a higher rate than

the collector can reclaim it, so an out-of-memory condition will eventually arise and pause the

program. Therefore, it is important to understand the impact of the main two consumers of

memory cycles when executing a program: memory access instructions and instruction fetches.

The collector does not operate during the short amount of time it takes the processor to execute

memory access instructions, such as loads and stores. As a result, programs that frequently access

memory decrease the spare memory cycles usable for collection operations. Figure 7.1 shows

that our benchmarks spend about 5-60% of memory cycles executing memory access instructions

in a system with the IHGC. It is also clear that the majority of these benchmarks use about

35-50% of memory cycles to execute memory instructions; specifically, this is the case for the

larger and more realistic programs in Figure 7.1(b) and Figure 7.1(c). However, the number of

92

7.4. MEASURING PERFORMANCE

(a) BEEBS.

(b) MicroPython.

(c) Large programs.

Figure 7.1: Distribution of memory cycles in the IHGC system as the amount of data loaded per
instruction fetch increases. The data width is the size of the hardware memory bus and in these
experiments corresponds to the number of bytes loaded per fetch operation. The program binary
is the same for all experiments as the software does not take advantage of the larger data widths
to optimize performance; memory accesses for instruction execution are limited to 4 bytes. The
bars labeled ‘GC’ correspond to the proportion of memory cycles available to the IHGC, but not
all these memory cycles are necessarily used.

93

CHAPTER 7. EXPERIMENTAL EVALUATION

memory instructions executed can change significantly depending on the program. For example,

benchmarks that mostly run numeric operations, such as cnt and cover, only use 5-10% of memory

cycles for memory access instructions. In contrast, dijkstra and susan devote almost 60% of

memory cycles for the same purpose. As we shall see in Section 7.4.2 and Section 7.4.3, this

leaves enough spare cycles to achieve few pauses and similar or better performance compared to

a system without the IHGC.

The spare memory cycles also decrease if the processor fetches instructions too often. The

fetch rate of a system is mostly dependent on the instruction set encoding and the width of the

hardware data bus connecting the processor to the main memory. For example, fetches in our

simulated platform are expected to consume 50% of all memory cycles because the ARM Thumb

instructions from the ARM Cortex-M0 processor are mostly encoded in 16 bits and the data width

is 4 bytes, so the processor normally loads two instructions per fetch. In general, our experiments

indicate that about 30-40% of memory cycles are dedicated to instruction fetches when the system

loads 4 bytes per fetch as shown in Figure 7.1. This is less than the expected 50% because the

processor is pipelined, so fetches are often performed while the pipeline is waiting for the result

of a load or store instruction. The IHGC could not have used the memory cycle regardless of these

fetches, so they do not decrease the number of memory cycles available to the collector.

In our experiments, the larger data widths are only used to increase the number of instruc-

tions fetched simultaneously. The program cannot take advantage of this feature to optimize

run-time performance as up to 4 bytes only can be loaded or stored using a memory access

instruction. Therefore, we would expect the amount of memory cycles used to execute memory

instructions to remain constant regardless of the data width because the program binary used

in all experiments is the same. But Figure 7.1 shows that this is not the case for programs like

json_dumps and tls_imgfilter. The discrepancy occurs because larger data widths increase the

collection rate affecting the program in two ways. First, the marking stage is performed more

often, so memory cycles are taken away from the IHGC because the processor marks on load

more frequently. And second, the pointer handles change when the collection rate increases, so

programs that conditionally execute code based on pointer comparisons have slightly different

run-time performance. As a result, Figure 7.1 shows that the proportion of cycles used to execute

memory access instructions change by up to 5% when the data width increases.

As illustrated in Figure 7.1, doubling the data loaded per fetch from 4 to 8 bytes reduces the

frequency of fetches by about a third. However, a further doubling from 8 to 16 bytes reduces

the memory cycles consumed for instruction fetching in a smaller proportion. This is because the

likelihood of finding branches within the instructions fetched increases. So the processor will

rarely be able to completely consume the 16 bytes of data before fetching once again.

In summary, 20-30% of memory cycles are available to the IHGC in the larger and realistic

benchmarks in Figure 7.1(b) and Figure 7.1(c). But this proportion can change significantly de-

pending on the type of work that the program performs as shown in Figure 7.1(a). In addition, the

94

7.4. MEASURING PERFORMANCE

proportion of memory cycles for instruction fetching can be reduced by loading more instructions

simultaneously. This is a simple mechanism to easily increase the spare memory cycles for the

collector without impacting the program’s performance.

7.4.2 The IHGC and Software Memory Managers

Comparing the IHGC with existing software memory managers is difficult. Off-the-shelf mem-

ory managers generally do not provide the same reliability guarantees that our system offers.

However, for the sake of this discussion, we compared the run-time and memory overheads of the

IHGC with two explicit memory management algorithms and a software garbage collector.

7.4.2.1 Explicit Memory Management

Explicit memory management requires the programmer to manually free memory when it is no

longer needed. For example, C programs typically allocate memory by calling the malloc function

and release it by calling free. Failing to release memory when it becomes unused, also known as

leaking memory, degrades performance and can even lead to complete failure because the memory

manager cannot repurpose enough space to serve future allocations. The implementations for

malloc and free are generally provided by the C Standard Library (or libc) that is linked with the

user’s program at the end of the compilation process. For our experiments, we used Newlib [138],

the libc that is included in the installation of GCC for ARM embedded processors. We linked the

BEEBS benchmarks with a minimal subset of Newlib and ran experiments using two explicit

memory management algorithms from this libc: dlmalloc [98] and nano-malloc.

Figure 7.2 compares the IHGC’s run-time with the explicit memory managers from Newlib

running on a conventional processor. The benchmarks in the graph can be classified in two groups.

First, the benchmarks dijkstra, levenshtein and listsort which are the only three programs in

Figure 7.2 that rely on dynamic memory. In this case, the IHGC is 1-2 times faster than the

conventional processor because collection operations in our system do not incur overheads for

the programs and the cost of allocations is negligible. In contrast, a share of processing time

must be dedicated to execute the explicit memory manager in the conventional system. It is also

clear from Figure 7.2 that the difference between the IHGC’s run-time performance and the

other system changes significantly depending on the explicit memory manager used. For example,

nano-malloc is designed to be a simpler algorithm than dlmalloc, so the benchmarks appear to be

slightly faster when using nano-malloc. However, the tradeoff is that nano-malloc is less resilient

to fragmentation.

The second group in Figure 7.2 consists of all the benchmarks that ran with comparable

performance in both systems, i.e. showed a 0.8-1.0 speedup factor. None of these programs use

dynamic memory, so the compiled code for both our system and the conventional processor is

exactly the same. These benchmarks are effectively measuring the IHGC’s run-time overheads as

a result of longer latencies when loading from memory, but these can be eliminated as discussed

95

CHAPTER 7. EXPERIMENTAL EVALUATION

Figure 7.2: Run-time performance change of BEEBS on the IHGC system when using a conven-
tional processor as a baseline. Separate measurements were taken when the program running
on the processor without the IHGC was using two explicit memory allocators (dlmalloc and
nano-malloc) from the Newlib libc.

in Section 7.1. Once again, programs with fewer memory access instructions, such as cnt and

cover from Figure 7.1(a), experience very low overheads. Programs with higher rates of memory

access instructions have slightly higher run-time penalties. For example, recursion and tarai are

both small recursive programs that spend most of their time setting up and tearing down the

function call stack frames, so about 50% of their memory cycles are spent on executing memory

access instructions (most of which are loads). However, it is clear from Figure 7.2 that most

programs have very modest overheads.

In practice, embedded systems often require large programs for tasks, like networking and

security, that rely on dynamic memory management. Given our experimental results, we expect

these programs to have comparable or better performance when running in our system compared

to a conventional processor. This is because the IHGC normally operates on spare memory cycles,

that would otherwise be unused, without run-time penalties for the user’s program. In contrast,

a traditional program written in C that relies on explicit memory management inevitably uses

the processor to fetch instructions and execute malloc and free in software.

7.4.2.2 Software Garbage Collector

The memory manager that has the closest feature set to the IHGC’s is a software garbage collector.

These collectors are commonly employed in interpreters to support garbage collected languages

like Python and Java. So we compared the run-time performance of MicroPython in processors

with and without the IHGC. MicroPython is an interpreter tailored to small embedded devices

for a subset of the Python 3 language. It uses a conservative mark-sweep collector operating in a

stop-the-world fashion [114].

The heap memory requirements for the IHGC and the software collector are very different for

the json_dumps, meteor_contest and pyflate benchmarks as shown in Figure 7.3. There are three

96

7.4. MEASURING PERFORMANCE

Figure 7.3: Heap memory requirements of the MicroPython benchmarks. The measured heap size
corresponds to the minimum amount of memory required to store all the program’s reachable
objects, i.e. the minimum amount of heap memory required to run the program.

main problems causing the mismatch. First, MicroPython’s software collector does not compact

memory and suffers from fragmentation, so its memory requirements can be substantially

higher than the IHGC’s. Second, we disabled the safety checks that prevented the program

from manipulating pointer handles as explained in Section 7.3. Unfortunately, in this setup

our collector is no longer exact because the program can construct pointers to arbitrary objects

while manipulating values. These arbitrary objects may actually be dead, but the collector does

not reclaim them because it believes that there is a pointer to them. In reality, these pointers

are merely data values from the program’s point of view. And third, the stack is allocated as a

contiguous block of memory in the IHGC, so objects below the stack pointer are often retained

despite being dead. As a result, the heap memory requirements for the IHGC and the software

collector are very different which makes performance comparisons difficult. For example, the

json_dumps benchmark appears to run slower in the IHGC than with the software collector.

However, this is only due to the hardware collector having to process a heap that is over four

times larger than that of the software collector which clearly takes significantly longer.

It is also important to consider the amount of memory processed by the collectors when

comparing the IHGC and the software collector. In MicroPython, it is guaranteed that the code

and global data sections do not contain pointers that need to be traced. So the software garbage

collector only needs to process the stack and the heap. In contrast, the IHGC is independent of

the user’s program and traces the full memory space. This is necessary in our setup because

the LLVM compiler includes pointers within the code and global sections of the program. This

means that our collector is processing in excess of 170 KB of memory more than the software

collector. Unfortunately, the difference in setup is crucial when comparing the two systems based

on programs that have relatively small heaps. For example, according to Figure 7.4 fannkuch

and nqueens appear to run slower in the IHGC system when the heap is small (see Figure 7.3).

This occurs because the heap is not large enough to give the hardware collector sufficient time

97

CHAPTER 7. EXPERIMENTAL EVALUATION

Figure 7.4: Run-time performance change of the MicroPython benchmarks on the IHGC system
as the heap size increases. A conventional processor running MicroPython with its software
garbage collector was used as a baseline.

to process the code object before an out-of-memory condition is reached. In fact, increasing the

heap by only 50% improves our system’s performance by a factor of 7.3 for nqueens. It is also

important to highlight that this is not a limitation of our design and it is easy to prevent the

collector from tracing the code object by using a toolchain that takes advantage of the IHGC’s

features as discussed in Chapter 8.

Despite the limitations of the comparison mentioned above, the IHGC outperforms the

software collector by a factor of 1.5-7 in several of the MicroPython benchmarks as shown in

Figure 7.4. This gain is thanks to our interleaving technique that executes the collector without

run-time overheads. It can also be seen in Figure 7.4 that the performance changes significantly

depending on the heap memory size. Increasing the heap size may result in better performance

by helping the collector avoid pausing the program due to out-of-memory conditions. For example,

deltablue is paused by the collector for about 25% of the time when the system is supplied with

the minimum amount of memory needed to run the program, i.e. ×1.0 heap size in Figure 7.4.

However, the performance for deltablue improves by a similar proportion when the heap size is

increased by 50%. This change occurs because increasing the heap size gives our collector more

time to reclaim garbage before the system runs out of free memory to satisfy allocation requests.

Clearly, the performance may not improve when the heap size increases as is the case with pyflate,

hexiom and unpack_sequence in Figure 7.4. This is because the collector was already fast enough

to reclaim memory without pausing, so changing the heap size has no effect. Furthermore, note

that the software collector experiences a similar effect in benchmarks like hexiom where the

IHGC’s performance gain decreases slightly as the heap size increases.

The data presented in Figure 7.4 was gathered when the IHGC was configured to simultane-

ously load 4 bytes per instruction fetch. This parameter was chosen because increasing it does not

affect the run-time in the conventional processor as the software garbage collector cannot take

advantage of this hardware feature. In practice, the run-time performance for some MicroPython

98

7.4. MEASURING PERFORMANCE

benchmarks improves a further 10-20% by doubling the amount of data loaded per fetch without

increasing the heap size. As discussed in Section 7.4.1, this is because the collector has more

spare memory cycles to operate without any overheads for the program, so the time spent paused

is greatly reduced when the heap size is small relative to the size of the live data.

7.4.3 Pauses

Pauses are inherent to any software garbage collector. This is because the processor must even-

tually be used to progress collection work and the user’s program regularly needs to coordinate

its operation with the collector to guarantee correctness. The IHGC completely eliminates these

pauses under normal operation as it runs on spare memory cycles, so the processor can be fully

utilized for application work. Also, the IHGC uses hardware within the processor’s pipeline to

ensure correctness when programs execute load and store instructions. However, pauses can still

occur if the program allocates memory faster than the collector can reclaim it. Eventually, the

system will reach an out-of-memory condition because there is simply not enough free space or

handles to satisfy an allocation. In this case, the program is paused until the collector reclaims

enough memory to meet the immediate allocation demands.

We investigated two techniques to mitigate pauses while allocating: using larger heaps and

increasing the amount of data loaded per instruction fetch. Enlarging the heap beyond the

minimum operating size needed by a program is perhaps the most widely used technique to

reduce pauses. The idea is to supply the system with enough space so that allocations can be

served immediately, so the collector has more time to complete a cycle as discussed in Chapter 6.

In contrast, simultaneously fetching more instructions gives our collector more time to operate

by increasing the system’s spare memory cycles.

In this section, we are interested in evaluating the impact of pauses on performance. So

Figure 7.5 shows the proportion of time that several of our benchmarks are paused due to

collection operations as the heap size and the number of instructions fetched increases. We do not

characterize the distribution of pauses in terms of MMU (as discussed in Chapter 2) because these

empirical experiments do not guarantee that the IHGC is suitable for hard real-time operation.

In Section 7.5, we will discuss how our proposed analysis techniques from Chapter 6 are used

to guarantee that the IHGC never pauses, i.e. the MMU is 100%, so that the system is hard

real-time.

For BEEBS and the large benchmarks, increasing the heap size by a factor of 1-1.5 decreases

the time spent paused dramatically as shown in Figure 7.5. In fact, only one program experiences

pauses when the heap is enlarged. Doubling the amount of data loaded per instruction fetch

decreases the time spent paused by up to 20% for levenshtein and 5% for tcp_imgfilter and

tls_imgfilter. In the case of the MicroPython benchmarks, the heap size has the most dramatic

effect for fannkuch and nqueens. As explained in Section 7.4.2.2, this occurs because the minimum

heap size requirements for these programs are very small and the IHGC unnecessarily processes

99

CHAPTER 7. EXPERIMENTAL EVALUATION

(a) BEEBS.

(b) MicroPython.

(c) Large programs.

Figure 7.5: Proportion of time that the benchmarks are paused due to the IHGC’s operations. For
each benchmark, the markers correspond to measurements with different heap sizes. Also, the
data width is the number of bytes loaded per fetch operation.

100

7.4. MEASURING PERFORMANCE

over 170 KB of data. Therefore, collection cycles take too long and likewise the pauses. However,

the other MicroPython benchmarks show the same benefits that we observed in BEEBS and the

larger benchmarks.

In summary, basic parameters in the IHGC system can be chosen by the hardware designer to

achieve very low or completely eliminate program pauses. The conventional approach of increasing

the heap size beyond the program’s minimum operational requirements is very effective. However,

the disadvantage is that memory requirements can increase significantly, which is not ideal for

small embedded devices. The alternative technique of increasing the number of instructions

loaded per fetch is also very effective. Our experiments indicate that this approach can reduce

the time spent paused by up to 20%. It only has modest hardware costs and the technologies

to support memory accesses larger than 4 bytes are widely used by the semiconductor industry.

A combination of both approaches can be used in embedded devices with the IHGC to mitigate

pause times.

7.4.4 Tag, Directory and Header Overheads

The IHGC has modest memory overheads due to the use of tags, directory and headers in a

32-bit embedded system. There is a 1-bit tag for every 32-bit word of memory, so tags incur a

3% memory overhead. The directory overheads are configured by the hardware designer. The

directory size sets the maximum number of allocated objects in the system. The size of the

physically addressable memory space also impacts the directory’s size; the object’s physical

address needs more directory bits if there are more memory locations to address. The IHGC uses

the first word of every object in memory to store a handle. In practice, the handles can always be

represented in 16 bits (2 bytes) because the remaining bits in a word indicate the offset within

the object. Therefore, the header is at most 16 bits in size; the remaining 16 bits from a 32-bit

word can be used by programs to store object metadata, such as type information.

In summary, the overall memory overheads vary depending on the system’s configuration

and the size and number of objects allocated by programs. For example, the directory overheads

are 6% when each directory entry requires 6 bytes and there is directory space for 1400 objects

in a system with 128 KB of memory. The header overheads are less than 3% if 1400 objects

are allocated and there is 128 KB of live memory. So the memory overhead per allocated object

is 8 bytes due to the directory and headers in this specific case. Also including the storage

requirements for the tags, the overheads are approximately 12%.

The IHGC’s overheads due to tags, directory and headers are comparable to the memory

requirements imposed by existing dynamic memory allocators. For example, dlmalloc requires at

least one word of extra memory per allocated object [98]. Compared to existing garbage collectors,

the IHGC’s space overheads are substantially lower. For instance, the collectors proposed by

Henriksson [79], Gruian and Salcic [74], and Stanchina and Meyer [167] incur 16 bytes of

overheads per allocated object instead of the IHGC’s 8 bytes. Therefore, our collector’s memory

101

CHAPTER 7. EXPERIMENTAL EVALUATION

overheads are lower while offering similar features to existing algorithms from the literature.

7.5 Hard Real-Time Analysis in Practice

Many benchmark suites, including TACLe [62], BEEBS [130], SNU Real-Time [1] and Mälardalen

WCET [75], have been proposed to evaluate hard real-time systems. These benchmarks are largely

small kernels executing arithmetic operations or simple algorithms for sorting or stream pro-

cessing. However, conventional real-time techniques cannot analyze dynamic memory allocators.

So the benchmarks are written to use static memory management and actively avoid dynamic

allocations. As a result, they are unsuitable to validate our hard real-time analysis technique for

a garbage collected system.

The available benchmarks also reflect the scarce use of modern languages in real-time

systems. Only one suite, JemBench [149], contains programs written in Java while the other

benchmark suites for embedded devices are almost exclusively written in C. But the benchmarks

in JemBench are mostly small programs translated from C to real-time versions of the Java

standard like Safety Critical Java (SCJ). Therefore, the use of dynamic memory is avoided making

the programs unsuitable to evaluate our real-time analysis for the IHGC. A related problem

is that there are very few software tools, like virtual machines, compilers and interpreters,

to support modern languages in hard real-time embedded systems. Multiple publications and

products can be found for such software infrastructure, but the source code is unavailable or

proprietary [4, 65, 134, 135].

In this section, we analyze programs from TACLe and BEEBS that demonstrate the limita-

tions of existing benchmark suites as outlined above. To overcome some of these problems, we also

developed two programs in C motivated by practical use cases that demonstrate the IHGC’s hard

real-time capabilities. We statically analyze these programs using the hard real-time technique

from Chapter 6.

7.5.1 Real-Time Evaluation Methodology

We use the analysis techniques presented in this thesis to estimate the worst-case amount of

memory required to never pause a given program. To achieve this, we construct a timing model

of our simulated ARM Cortex-M0 processor and use it alongside the automated static analysis

tool to estimate the program parameters necessary for the analysis, i.e. t f and a (see Section 6.5).

The ARM Cortex-M0 has very predictable timing behavior, so its timing model is simply a table

indicating the time, in clock cycles, taken to execute each instruction. Our simulator is timing-

accurate, so the timings for the instructions are mostly taken from the ARM Cortex-M0 Technical

Reference Manual as described in Section 7.1.

In addition to the processor’s timing model, the analysis from Chapter 6 requires the timings

of various IHGC operations to construct a full timing model of the collector. For example, the

102

7.5. HARD REAL-TIME ANALYSIS IN PRACTICE

Benchmark tgc/t f a m Minimum

dijkstra 0.12 1575 15113 11963
levenshtein 4.69 33 582 206
matmult 0.40 1323 4142 1496
md5 0.02 35 9018 8948
sha 0.05 28 9121 9065

Table 7.1: Results of analyzing BEEBS and TACLe benchmarks. The amount of memory allocated
per period (a) and the estimated worst-case amount of memory (m) are in words. The last column
indicates the empirically measured, minimum amount of memory (in words) required to run the
program.

duration of the initialization and termination operations (tinit) is necessary to estimate the length

of a collection cycle (tgc). These operations have a fixed duration in clock cycles given by our

IHGC implementation in the simulator.

Calculating the worst-case memory requirements (m) for a given program involves simple

algebraic manipulations once the program parameters have been extracted and the constants for

the collector’s timing model are available. This analysis also provides a wealth of information

about the program and the IHGC. For example, the automated static analysis tool calculates

the worst-case run-time of the code considered which can later be used to estimate interrupt

latencies and jitter. Additionally, information about the collector’s run-time can be used to find

bottlenecks and even improve the design of the IHGC.

It is important to highlight that the techniques presented in this thesis are suitable for

analyzing hard real-time programs only. These programs are typically designed to facilitate static

analysis to guarantee that the embedded system will always meet its deadlines. Therefore, the

programs considered in this section are hard real-time. In contrast, soft real-time programs

do not have such strict timing constraints, so programmers normally experiment with these

systems empirically to ensure that interrupt latencies and jitter are within acceptable ranges.

However, unpredictable pauses and delays can still occur. In this thesis, we leave hardware

garbage collection for soft real-time embedded systems as future work.

7.5.2 Real-Time Analysis Benchmarks

We analyzed programs from the TACLe and BEEBS benchmark suites (see Section 7.2). The

programs analyzed are written in C and run simple numeric operations or classic algorithms.

They are self-contained and suitable for embedded systems, but they do not use dynamic memory.

Therefore, we modified the benchmarks to allocate memory dynamically instead of statically. We

also changed the programs to periodically execute their main operation. For example, in the case

of matmult, the program periodically allocates memory for three matrices and performs a matrix

multiplication. The code executing the periodic operation was analyzed using our automated

103

CHAPTER 7. EXPERIMENTAL EVALUATION

static analysis tool to estimate a and t f .

A summary of the analysis results is in Table 7.1. The second column shows that in dijkstra,

matmult, md5 and sha a full collection cycle finishes before the program’s periodic operation

is completed once. In this case, our estimation of m is the theoretical minimum according to

Equation 6.3 and Equation 6.4 in Section 6.3:

(7.1) m = n+ r+2a
⌈ tgc

t f

⌉
= n+ r+2a

In other words, the minimum amount of extra memory that our analysis predicts is twice

the memory allocated during the execution of one period of the program or 2a. For matmult, this

corresponds to twice the size of the matrices allocated before performing the multiplication.

Levenshtein is an example of a program where our analysis overestimates the memory

requirements. This program executes a dynamic programming algorithm that computes the

string distance. The input strings given are typically very short and the task is memory intensive.

Therefore, the worst-case number of unused memory cycles t f is too small compared to the

duration of a collection cycle tgc. This causes our analysis technique to overestimate that the

system theoretically needs more than 8a extra words of memory to eliminate pauses. However,

we empirically measured the program’s memory requirements and we never observed the extra

memory needed to exceed 2a although this is not a guarantee that the system will never pause.

The TACLe and BEEBS programs analyzed exhibit very basic use of memory. They allocate

most of the memory shortly after the beginning of each execution period. Then a (potentially

long) computation is performed, and finally the memory is discarded (along with the result). This

behavior is not realistic because the benchmarks were not designed to evaluate dynamic memory

managers; the results shown in Table 7.1 are only included in the thesis for completeness. For

this reason, we developed programs that include more complex dynamic memory usage patterns.

The remaining of this section presents our analysis for such use cases.

7.5.3 Case Study: Converter

We developed converter, a real-time program written in C, to evaluate our analysis technique.

The program receives data packets from a serial device at a rate of 115200 bits per second. It

must output these packets using another serial device with a data transfer rate of 9600 bits per

second. The program must ensure that data is output continuously without interruption, but the

input data stream can be paused.

The data packets are of variable size. The minimum packet size is 64 bytes and the maximum

is 1518 bytes. The program buffers up to 64 KB of incoming packet data since the input rate is

higher than the output. When the buffer is full, the input stream is paused until storage space

from outgoing packets can be reused. The serial devices use Direct Memory Access (DMA) to

automatically move incoming and outgoing data between the memory and the serial port without

104

7.5. HARD REAL-TIME ANALYSIS IN PRACTICE

(a) Memory requirements as more information about
the program is supplied to the real-time analysis.

(b) Memory requirements as the amount of data loaded
per instruction fetch increases.

(c) Duration of a garbage collection cycle. (d) Memory allocated in a collection cycle (w).

Figure 7.6: Estimated memory requirements and garbage collection cycle duration for converter.
Higher clock speeds increase t f and yield smaller estimates for the memory size and collection
cycle duration. The memory requirements are shown as the ratio between the estimated amount
of memory and the program’s worst-case live size. It is assume that the duration of a memory
cycle in clock cycles does not change as the clock frequency increases.

105

CHAPTER 7. EXPERIMENTAL EVALUATION

processor intervention after setup. For simplicity, we assume that the DMA does not share a port

with the processor and the IHGC to access the memory, so it does not affect the number of spare

memory cycles available to the collector.

The program uses polling instead of interrupts. It can determine whether the last serial

operation was completed by executing instructions that check the device’s status flags. As a

result, the program must constantly check the serial port’s status instead of being notified by

an interrupt controller. This polling approach puts additional pressure on the IHGC and our

analysis technique because the processor is always using memory cycles for instruction execution

and is never idle.

The first step to apply our technique is to estimate the program parameters required by the

IHGC’s model. We estimated n, r, p, d, s, z and c by manually inspecting the code, but used the

automated static analysis tool from Section 6.5 for a and t f .

We must identify the operation that the program executes periodically to estimate a and

t f . Converter periodically receives a data packet via the serial device. It performs the following

sequence of operations during the execution of each period:

1. Receive the fixed-size packet header containing the packet size.

2. Allocate memory for the incoming packet.

3. Receive the remaining packet data.

4. Add the packet to the output transmission queue.

The worst-case a is simply the maximum packet size. The worst-case t f is the minimum

number of memory cycles available to the collector while the program is executing the operations

listed above. But receiving the data takes less time if there is less data to transfer. So the

worst-case t f occurs when receiving packets of the minimum possible size.

Using the worst-case a and t f causes our analysis to dramatically overestimate the system’s

memory requirements. This is because the program will never allocate space for a packet of

maximum size when it receives a packet of minimum size. Therefore, the worst-case a and t f

cannot occur simultaneously. Instead, we use every feasible combination of a and t f pairs to

calculate a list of m; the list is only as long as there are possible packet sizes. Finally, we select

the maximum m from the list which gives our worst-case estimated memory requirements to

guarantee that the IHGC never pauses the user’s program.

The results of our analysis for converter are shown in Figure 7.6. For these plots, we varied

the number of memory cycles available for the IHGC (t f) by changing the clock frequency without

modifying the program. Increasing the clock frequency speeds up the processor, memory and

IHGC as the three components share the same clock, so the larger t f occurs because the input

and output data transfer rates remain fixed in all our experiments. In addition, the extra memory

requirements are shown as the ratio between the estimated memory calculated by our analysis

106

7.5. HARD REAL-TIME ANALYSIS IN PRACTICE

(n+ r+2w) and the program’s worst-case live size. Figure 7.6(a) shows that the best estimate

produced by our real-time analysis increases memory requirements by factors of 1.06 to 1.46

for clock frequencies between 2-30 MHz. The excess memory increases further if the clock speed

is dropped. For example, the estimates at 600 KHz are over 7 times larger than the size of the

program’s live memory. Also, our analysis fails to estimate a memory size when the clock speed

drops too much, such as 500 KHz. This occurs when the allocation rate exceeds the collection rate,

so theoretically the IHGC cannot ‘keep up’ with the program.

The real-time analysis produces the lowest memory requirement estimates when more

information about the program’s behavior is supplied via the c, n, p, s and d parameters. But

these parameters are not essential. Figure 7.6(a) illustrates how the estimates increase when the

parameters are progressively replaced by their worst-case values. For example, the line labeled

c,n, s,d does not include p; implying that every word in deep objects is expected to be a pointer.

This worst-case assumption increases the time that the IHGC is expected to need to complete

the marking stage. The resulting memory estimate does not increase significantly because the

program allocates very few deep objects.

The estimated memory requirements increase by up to 21% when the parameters s and d

are not supplied. This large gap occurs because without s and d our analysis has to assume

that every object in memory is deep. Therefore, the marking stage will theoretically last longer

because the majority of converter’s allocated storage space corresponds to packet data that does

not contain pointers. Lastly, replacing all the parameters c, n, p, s and d that are not essential to

our real-time analysis with their worst-case values yields up to a further 7% larger memory size

estimate. Supplying these parameters is a burden for the programmer. Therefore, our analysis

technique eases that burden by allowing the parameters to be replaced by their worst-case values

at the expense of larger estimated memory sizes.

Figure 7.6(c) shows the distribution and duration of collection cycles as the processor’s

clock frequency changes. We can make three important observations. First, the duration of tinit

and troots is negligible as expected because these are short, constant-time operations that are

performed in less than 5 memory cycles. Second, the duration of the IHGC’s mark stage lasts

10-15% of the total collection cycle length and is not affected by the duration of a collection cycle.

This is because the amount of marking work is proportional to the live size which we can closely

characterize using static program analysis techniques. Finally, the IHGC spends 80-85% of its

time compacting in the worst-case. Also, longer collection cycles increase the duration of compact

because more memory is allocated during the cycle (w) as shown in Figure 7.6(d). A larger w also

implies more work during compact because newly allocated objects must be copied, which in turn,

yields longer collection cycles. We consider that future research should focus on improving the

performance of compact given that it is the most time-consuming operation.

The value of t f decreases if the processor fetches instructions too often as discussed in Sec-

tion 7.4.1. Increasing the amount of data fetched simultaneously reduces the memory cycles

107

CHAPTER 7. EXPERIMENTAL EVALUATION

required by the processor for fetching, so the estimated memory size decreases as shown in

Figure 7.6(b). According to our experiments, fetching 2 words simultaneously instead of 1 de-

creases the estimated memory size by about 11% when the processor’s clock speed is 2 MHz. Also,

increasing the number of words fetched from 2 to 4 decreases the estimated memory size by a

further 7%. This approach is simple from the programmer’s point of view as it does not require

changes the program source code. However, increasing the data fetched requires a change in the

hardware along with a different cost model to estimate t f using our automated static analysis

tool.

7.5.4 Case Study: Router

Router is another real-time program developed by us to validate our hard real-time analysis

technique. It performs the functions of a simple routing device that receives packets from one

input port and transmits them to either one of two ports using an address in the packet header.

The input data rate differs from the output rate, so the router must buffer packets until they can

be sent. The program must ensure that the input stream is never paused due to the lack of buffer

space. So network packets in the internal buffers can be dropped to free up space for incoming

packets.

The packet sizes and general system configuration of router is similar to converter. The

packets are of variable size and contain between 64 to 1518 bytes of data. Router’s buffers are also

64 KB in size. The input and output ports are operated by serial devices that access the system’s

memory through Direct Memory Access (DMA). The program uses polling instead of interrupts.

We estimated n, r, p, d, s, z and c by manually inspecting the code. To estimate a and t f , we

identified the operations that the program executes periodically and fed this information to our

automated static analysis tool. Router performs the following sequence of operations during the

execution of each period:

1. Receive the fixed-size packet header containing the packet size.

2. Drop packets from the internal buffer (if necessary) to make space for the incoming data.

3. Receive the remaining packet data.

4. Route the packet to the correct output transmission queue.

The results of our analysis for router are show in Figure 7.7. There is clearly a striking

similarity between the shape of the curve for converter and router. This is expected because the

system’s memory requirements to avoid pauses increase as the number of spare cycles available

to the collector decreases. However, the plots also show a key differences between the two case

studies: the duration of a garbage collection cycle is shorter in router than converter. Comparing

Figure 7.7(c) with Figure 7.6(c), it is clear that the difference is due to shorter compact stages in

108

7.5. HARD REAL-TIME ANALYSIS IN PRACTICE

(a) Memory requirements as more information about
the program is supplied to the real-time analysis.

(b) Memory requirements as the amount of data loaded
per instruction fetch increase.

(c) Duration of a garbage collection cycle. (d) Memory allocated in a collection cycle (w).

Figure 7.7: Estimated memory requirements and garbage collection cycle duration for router.
Higher clock speeds increase t f and yield smaller estimates for the memory size and collection
cycle duration. The memory requirements are shown as the ratio between the estimated amount
of memory and the program’s worst-case live size. It is assumed that the duration of a memory
cycle in clock cycles does not change as the clock frequency increases.

109

CHAPTER 7. EXPERIMENTAL EVALUATION

router. This occurs because the collector has more spare cycles to operate when router is executed

compared to converter. As a result, there is less memory allocated during a collection cycle (w)

and the worst-case memory estimates are also smaller.

7.5.5 Scaling Up the Hard Real-Time Analysis

In this thesis, we applied our real-time analysis technique to programs written in C with up

to 500 lines of code. We were limited by the difficulty to find suitable benchmarking software.

However, there is no evidence to suggest that the analysis would not scale to larger, more complex

programs. Our hard real-time analysis relies on two pillars: the time-predictability of the IHGC

and the static analysis of programs. We demonstrated the time-predictability of the IHGC in

Chapter 6 when we constructed its timing model. Our static program analysis relies extensively

on state-of-the-art real-time analysis techniques normally used for Worst-Case Execution Time

(WCET). Therefore, our analysis is expected to scale to other programs as long as the WCET

techniques can be applied to them.

Our real-time static analysis technique can also be applied to programs written using statically

typed modern languages like Java, C# or Go. These languages require the programmer to specify

the type of each variable at compile-time. Thus, our automated program analysis tool can easily

use the type information to determine what operation the code performs and the amount of time

or memory resources that it consumes. In contrast, the type of a variable is only determined

at run-time in dynamically typed languages, such as Python or JavaScript, so it is difficult

to statically analyze programs written in these languages. As a result, the real-time analysis

techniques demonstrated in this thesis using C programs are also applicable to software written

in statically, although not dynamically, typed modern languages.

7.6 Summary

Through simulation, we experimented with C programs, some of which relied on explicit memory

management. We found that the performance of these programs is comparable or better in

the IHGC than in a conventional processor. We also observed that when running a Python

interpreter, the IHGC’s run-time outperforms a software collector by factors of 1.5-7 in several

of our benchmarks. Our experiments indicate that large and realistic programs mostly run

without pauses when the system’s heap size is increased by 20% over the minimum operational

requirement. In addition, simple hardware features, such as the amount of data simultaneously

loaded per instruction fetch, can be leveraged by the collector to efficiently improve performance

without increasing pause times or memory requirements.

We put in practice our hard real-time analysis technique using the TACLe and BEEBS

benchmark suites. The results show that our technique predicts the theoretical minimum memory

requirements to run these programs without pauses. However, these programs do not use dynamic

110

7.6. SUMMARY

memory in realistic settings. So we analyzed two practical programs and explored how the

estimated memory requirements change depending on the spare memory cycles available to the

IHGC. For example, increasing the processor’s instruction fetch rate can reduce the estimated

memory size by up to 11%. We demonstrated how our automated static program analysis tool

was used to characterize a program’s memory cycles and allocation patterns. It was also shown

how additional program information, such as the number of pointers and live objects, improves

our memory size estimates.

The aim of this experimentation work was to show that the IHGC, a hardware-implemented

collector, can deliver real-time guarantees while keeping performance and memory overheads

low compared to existing collectors. We consider that this goal was achieved, but several issues

remain open:

• There are clear conflicts between some of the IHGC’s features and the code generated by

off-the-shelf compilers.

• It is unclear how some features of the IHGC, such as the type tags and root marking, can

be efficiently realized in the hardware.

• Embedded devices require I/O and the ability to respond to interrupts and exceptions. We

must provide further evidence that the IHGC can be used in systems that require these

features.

The issues are addressed in Part III of this thesis.

111

Part III

Architecting a Garbage Collected
Embedded System

113

C
H

A
P

T
E

R

8
GARBAGE COLLECTION IN INSTRUCTION SET DESIGN

In Part II, we presented and evaluated the IHGC, a hardware garbage collector that is deeply

integrated with the processor. Our focus so far remained in the algorithm’s design, efficiency and

real-time properties while other problems with integrating the collector into a practical computer

system have not been discussed. For example, we found conflicts between the code generated by

off-the-shelf compilers and the IHGC. We address these issues by exploring, through compiler

design, the impact of the IHGC on the computer’s Instruction Set Architecture (ISA).

8.1 Problem Statement

Exact collectors, like the IHGC, guarantee that objects are never reclaimed while they are

reachable and that unreachable objects are eventually reclaimed. Collectors use mechanisms

like read and write barriers (or mark on load in the IHGC) to ensure that these correctness

properties are always met when the user’s program accesses memory. But many other, non-

memory operations can also violate these properties. For example, adding a value to a pointer

without restrictions may result in a pointer to another object that is in the process of being

reclaimed. This is clearly erroneous behavior, so reliable garbage collected systems must prevent

these failures.

Modern garbage collected languages eliminate the problems outlined above by design. For

example, strictly typed languages like Java and C# do not allow arbitrary operations on pointers

or type conversions between pointers and integers. The code is checked statically and type errors

are detected and reported by the compiler. Similarly, dynamically typed languages, such as

Python and JavaScript, have runtime environments that prevent potentially dangerous pointer

operations and type conversions at run-time. Therefore, the software collectors used in these

systems are relieved from the responsibility of ensuring that pointer operations do not cause

115

CHAPTER 8. GARBAGE COLLECTION IN INSTRUCTION SET DESIGN

failures. However, an embedded system with the IHGC cannot rely on programming language

assumptions. First, runtimes often incur performance, memory and code size overheads that

these small devices cannot afford, so the runtime itself or much of its checking capabilities could

be dispensed with. Second, the compiler or runtime performing the type checks is not necessarily

bug-free; mistakes (or malicious behavior) sometimes occur that could compromise the stability

of the system. And third, the vast majority of embedded software is currently written in C/C++

or even assembly. These languages are weakly typed, so programs cannot be trusted to uphold

the IHGC’s correctness properties. Instead, we solve the problem by exploring changes to the

interface between the IHGC and the programmer: the Instruction Set Architecture (ISA).

Changes for the ISA to work alongside the IHGC must carefully balance two conflicting goals:

safety and compatibility. An ISA can leverage the IHGC’s rich feature set to boost safety by

enforcing strict run-time checks on operations that use pointers. For example, the ISA could

prevent pointers to out-of-bounds locations from being constructed instead of simply checking

out-of-bounds accesses when loading or storing to memory. These strict checks facilitate error

detection and containment, but they limit compatibility with existing software and compilers that

do not uphold such safety requirements. For instance, embedded C/C++ programs compiled with

LLVM or GCC often perform pointer operations that would be considered unsafe by the ISA, so

the software would no longer work. Therefore, we must ensure that ISA changes strike a balance

between safety and compatibility with existing software, but as a minimum, guarantee that the

stability of the IHGC system is never compromised regardless of software bugs (or malicious

intent).

Previous hardware garbage collection research often focuses on the algorithm’s design and

its efficiency. But the practical considerations of integrating the collector with a computer

architecture are often neglected. For example, it is unclear how arbitrary pointer operations

that compromise the collector’s correctness are handled or how collectors interact with interrupt

handlers and I/O devices. It is our view that these challenges must be addressed to build a truly

practical embedded system with hardware garbage collection. Thus, our goal in this chapter is to

identify and resolve the issues arising from the integration of the IHGC with ISAs. Our main

concern is to guarantee the collector’s correctness and reliability, even in the presence of buggy or

malicious software, while ensuring that the ISA maintains a high degree of compatibility with

existing software and compilers.

8.2 Architectural Challenges

Programmers usually write code in a language that eventually gets translated into machine

instructions by a compiler. The compiler is the direct user of an ISA; it encodes the assumptions

and intentions of the ISA designers. So it is important that compilers can generate efficient

code using an ISA. In addition, implementing a compiler is a good strategy to ensure that the

116

8.2. ARCHITECTURAL CHALLENGES

ISA is compatible with the programming languages supported by the compiler. As a result, we

investigated the integration challenges between the ISA and IHGC through compiler design.

In this section, we explain the challenges in designing an ISA for the IHGC. We do so from

the perspective of an existing architecture, ARMv6-M, and a new architecture, BeyondRISC,

proposed by Andrés Amaya García and David May. We use code examples and assembly emitted

by the LLVM version 9 compiler to illustrate the issues encountered and our proposed solutions.

We also outline our experience while extending LLVM with a new backend for the BeyondRISC

architecture.

8.2.1 Background

We briefly describe basic features from the architectures discussed in the remaining of this

chapter.

8.2.1.1 The ARMv6-M Architecture

The ARMv6-M architecture is the microcontroller profile of the ARMv6 revision [20]. ARMv6-M

supports the Thumb instruction set which consists mostly of 16-bit and a few 32-bit instructions.

There are 16 registers each with 32 bits. However, the majority of instructions can only access the

first eight (r0-r7), or low, registers. A small number of instructions can also access the remaining

eight, or high, registers which include a program counter (pc), a link register (lr) and the stack

pointer (sp). In addition, many 16-bit Thumb instructions have an implicit register operand due

to the lack of space in the encoding.

Conditional execution is a feature of some Thumb branch instructions; this is also known

as predicated execution. The branches are only taken if the bits in a status register satisfy the

condition specified by the branch instruction; otherwise, the branch is not taken effectively

becoming a nop. Most Thumb instructions modify the status register.

8.2.1.2 The BeyondRISC Architecture

BeyondRISC is a computer architecture for embedded devices that uses variable 16-bit or 32-bit

instructions. The register file has 10 general-purpose 32-bit registers along with a program

counter (pc), the stack pointer (sp), an environment pointer (ep) and a status register (sr). The ep

is used to facilitate access to global data structures. The sr contains configuration flags, such as for

floating-point arithmetic; BeyondRISC does not rely on predicated execution. Most instructions

access the general-purpose registers while only a few instructions, like stack operations, can

access the special-purpose registers.

BeyondRISC is an experimental RISC architecture that we developed from scratch. It was

specially designed to be implemented in systems that also have the IHGC. We use BeyondRISC

in this thesis to illustrate how an ISA can be designed from scratch with garbage collection in

117

CHAPTER 8. GARBAGE COLLECTION IN INSTRUCTION SET DESIGN

mind. Therefore, it is an important vehicle to explain the challenges and solutions to integrating

the IHGC with novel ISAs. We also use BeyondRISC to discuss the practical implications of

extending existing compilers to support ISAs with garbage collection.

8.2.2 Operations on Pointer and Value Types

Exact garbage collectors must distinguish pointer from data values without fault. The IHGC

achieves this by using an extra tag bit for every word in memory and the registers. Therefore,

any ISA that operates alongside the IHGC must be adapted to incorporate these two types. In

our experience from Chapter 7, these requirements cause recurrent problems with existing ISAs

because there is no concept of types when specifying the instruction operands. For example, the

ARMv6-M architecture does not mandate that the two input operands for an add instruction

cannot both be pointers even though the operation is meaningless. Such operations violate the

IHGC’s correctness properties as they can generate pointers to arbitrary objects.

The ARMv6-M architecture actually includes very few instructions specifically designed

for address generation. In fact, arithmetic instructions are also often used to perform pointer

arithmetic on the low registers while most address generation instructions use an implicit high

register as the base pointer. Therefore, the obvious solution to support the IHGC alongside the

ARMv6-M architecture is to add the extra tag bit to every word in memory and the registers and

to change the semantics of the existing instructions to restrict the allowed operand types. The

instructions are changed as follows:

• Most data processing operations, like multiplication and byte reverse, raise an exception

when any of the supplied operands is a pointer.

• Memory access operations, such as loads and stores, check that the base address operand is

a pointer and the offset (if any) is a data word.

• The operations performed by addition and subtraction instructions depend on the types of

the operands. For example, adding a data word to a pointer results in a pointer to the same

object with potentially a different offset, even if overflow occurs, but adding two pointers

gives rise to an exception.

The advantage of this approach is that the architecture does not require new instructions

and compatibility with existing software is largely maintained. The drawback is that compilers

need to be made aware of the semantic changes, so programs need to be recompiled to run on

the modified architecture. In addition, some existing software will inevitably cease to execute

correctly as it performs restricted operations on pointers. For instance, MicroPython’s parser

encodes the type of a word using the least significant two bits [115]. The bitwise operations shown

in Listing 8.1 are often used on arbitrary words to determine whether they contain word-aligned

pointers or data. Fortunately, the majority of programs will be unaffected by semantic changes

118

8.2. ARCHITECTURAL CHALLENGES

1 #define MP_PARSE_NODE_NULL (0)
2

3 #define MP_PARSE_NODE_IS_NULL(pn) ((pn) == MP_PARSE_NODE_NULL)
4 #define MP_PARSE_NODE_IS_LEAF(pn) ((pn) & 3)
5 #define MP_PARSE_NODE_IS_STRUCT_KIND(pn) (... && ((pn) & 3) == 0 && ...)
6

7 if (MP_PARSE_NODE_IS_NULL(*pn)) {
8 // Empty node
9 } else if (MP_PARSE_NODE_IS_LEAF(*pn)) {

10 // Node does not contain a pointer
11 } else {
12 // Type cast to pointer.
13 mp_parse_node_struct_t *pns = (mp_parse_node_struct_t*)(*pn);
14 if (MP_PARSE_NODE_STRUCT_KIND(pns) != pn_kind) {
15 ...
16 }
17 }

Listing 8.1: Code fragment from the MicroPython parse.h and parse.c files performing bitwise
operations on arbitrary words [115]. Type conversions between pointer and integer are also
executed.

to instructions because arithmetic and bitwise operations on pointers do not occur in modern

languages like Java, Python or C#. Moreover, the C standard mandates that operands to bitwise

and arithmetic operations, with the exception of addition and subtraction, must not be pointers

and conversion between pointer and integer types is discouraged [81].

Another problem with allowing instructions to accept both pointers and data words is condi-

tional behavior. That is, the instruction’s operation becomes conditional upon the operand’s types

which increases the complexity of the hardware implementation. This is especially problematic

when attempting to leverage the IHGC’s data to perform safety checks alongside pointer arith-

metic. An alternative to mitigate this issue is to segregate the instructions into arithmetic and

address calculation at the expense of instruction encoding space. For example, an add performs

the regular addition of two integers and an instruction ldaw adds a scaled offset to a base pointer;

add and ldaw both raise exceptions if operands of incorrect type are supplied. Additionally, ldaw

could raise an exception if the resulting pointer is outside the object’s bounds. Segregating arith-

metic and pointer arithmetic instructions in this fashion is not a new idea; existing ISAs already

implement similar schemes, such as the XMOS XS1 architecture [107]. We reuse this idea in

BeyondRISC to cleanly differentiate types and safeguard the IHGC’s correctness properties.

8.2.2.1 Pointer and Value Types in LLVM

LLVM is a widely used general-purpose compiler framework to translate code from C, C++ and

other programming languages into machine code. The compilation process has three major stages.

First, the source code is parsed and translated into the LLVM Intermediate Representation (IR).

This is a Single Static Assignment (SSA) assembly language that retains type information from

119

CHAPTER 8. GARBAGE COLLECTION IN INSTRUCTION SET DESIGN

the original code. The IR is low-level and flexible enough to allow applying a range of optimizations

during the second stage. Finally, the instruction selection stage reads in the optimized IR and

emits the machine code for a specific architecture.

The instruction selection stage is implemented by a backend that is different for every

computer architecture. For example, there are different backends for ARM, x86, RISC V and

we added a new one for BeyondRISC. The LLVM backend framework takes the IR as an input

and progressively lowers the SSA instructions into actual machine instructions. However, the

process discards the majority of the operand type information early on. For example, the backend

internally converts a string pointer in the original LLVM IR to a plain 32-bit integer when

compiling code for a 32-bit machine. This causes difficulty in backends that generate code for an

IHGC system because it is always unclear what instruction is appropriate for the given operands.

To maximize compatibility with existing compilers and software, we mitigate these problems

in both the ARMv6-M and BeyondRISC architectures by allowing a small set of arithmetic

instructions to operate on both pointers and data:

Bitwise-or. Performs the bitwise-or of two words and produces an integer regardless of the

input operand types.

Unsigned less than. The input operands are treated as unsigned integers and compared.

Add, subtract. The input operands are added or subtracted if they are not pointers. If one

of the operands is a pointer, the integer operand is added or subtracted from the base

pointer’s offset; the pointer handle remains unchanged. Adding two pointers gives rise to an

exception. Subtraction of two pointers is also allowed; the pointers are treated as unsigned

integers and the result is a data value. Subtraction of two pointers is a commonly used

operation in programming languages, like C, to compute the distance between two pointers.

Another problem with the type occurs when branching on a condition. Programming languages

like C specify a NULL pointer as the integer value 0 cast to a pointer type. Compilers take

advantage of this to optimize comparisons against the NULL pointer within conditional expressions.

For example, the compiler can directly branch using a pointer as a boolean value as shown in

Figure 8.1. The compiler can also use bitwise-or instructions on pointer operands to derive a

boolean value for the branch as it occurs in Figure 8.2. To efficiently support these operations, we

simply need to allow the comparison instruction (cmp) to operate on pointers in the ARMv6-M

architecture. In contrast, BeyondRISC does not use predicated execution, so we must instead

allow conditional branches using pointers as boolean values. The NULL value evaluates to false

and a pointer evaluates to true.

120

8.2. ARCHITECTURAL CHALLENGES

1 unsigned int *a;

2

3 if (a) { ... }

(a) Conditional if-statement.

1 brTrue $a, .label

2

3

(b) Assembly.

Figure 8.1: Compiler generated machine code using a pointer as a boolean operand for a condi-
tional branch instruction. A NULL pointer results in the branch not taken.

1 unsigned int *a, *b;

2

3 if (a == NULL && b == NULL) { ... }

(a) Conditional if-statement.

1 or $isNull, $a, $b

2 brFalse $isNull, .label

3

(b) Assembly.

Figure 8.2: Compiler generated machine code using a bitwise-or instruction to produce a boolean
value from pointer operands. The compiler takes advantage of NULL being standardized to the
value zero to optimize the conditional check.

High Addresses

Callee Save

Registers

Local

Variables

Arguments

for bar()

Callee Save

Registers

Local

Variables

Low Addresses

Local bar

Object

sp

bar()

foo()

Unused

Stack Space

Previous

Stack Frames

(a) Stack layout after a function call to bar from foo.

Callee Save

Registers

Local

Variables

Arguments

for bar()

Callee Save

Registers

Local

Variables

Local bar

Object

sp

foo()

Unused

Stack Space

Previous

Stack Frames

(b) Stack layout after returning from bar to foo.

Figure 8.3: Layout of a stack implementing the ARM-THUMB Procedure Call Standard (ATPCS)
when foo calls another function bar with more than four arguments. The local object dynamically
allocated by bar will not be reclaimed by the IHGC after returning to foo.

121

CHAPTER 8. GARBAGE COLLECTION IN INSTRUCTION SET DESIGN

8.2.3 Function Call Stack

The function call stack is perhaps the most complex data structure managed by the garbage

collector. There are two main problems caused by the inherently dynamic nature of the stack.

First, it is difficult to distinguish pointers from data words in the stack. The contents of the

stack are constantly changing as functions are called and exited, so the type of the words in

the stack is also in constant flux. Multiple schemes have been proposed to address the problem,

but the solutions often incur high overheads or degrade the system’s real-time properties. For

example, Henriksson’s collector uses two stacks; the user program’s stack and a supplementary

stack with references to the locations in the first stack that contain pointers [79]. Pushing and

popping pointers on the stack requires operating two data structures and at least double the

space for each pointer. An alternative proposed by Gruian and Salcic is to conservatively scan

and mark the stack [74]. But their collector is no longer exact making it difficult to analyze its

real-time properties. The IHGC does not suffer from these problems because it relies on tag bits

to distinguish pointers from data.

The second problem is the difficulty in determining when the stack must be scanned during

marking. Many existing collectors (especially those implemented in software) consider the stack

as part of the roots, but root marking is often not an incremental operation. Therefore, root

scanning may introduce long pauses when the stack is large. The IHGC eliminates these pauses

because the stack is not included in the root set of pointers. The stack is treated as a regular

object that is marked and compacted incrementally. However, our experiments from Chapter 7

showed that this approach to managing the stack caused the IHGC to unnecessarily retain

garbage objects. This problem occurred because our simulated system uses a contiguous stack

layout. In the remaining of this section, we describe this issue and outline solutions.

8.2.3.1 Contiguous Stack

The ARMv6-M architecture relies on the ARM-THUMB Procedure Call Standard (ATPCS) [17].

The standard describes the mechanism used to implement function calls including: input argu-

ments, return values and the layout of the function call stack. ATPCS mandates a contiguous

stack meaning that each thread’s stack is allocated as a contiguous block of memory. Also, the

stack is full descending, so the sp register references the last value pushed and the stack grows

from high to low addresses. Before performing a function call, the caller loads the first four

arguments onto r0-r3 and any other arguments are pushed onto the stack. The callee can modify

the argument registers, but it must ensure that the values in any other callee save registers are

unchanged when returning to the caller. So on entry to a function, the callee decrements the sp

to create a new stack frame for local variables and saves the registers whose value needs to be

restored before returning.

An example of an ATPCS stack after two function calls is shown in Figure 8.3(a). The stack

frame at the high addresses belongs to the function foo and the following frame is from bar.

122

8.2. ARCHITECTURAL CHALLENGES

Stack space has to be reserved for argument passing because bar has more than four arguments.

In addition, copies of the callee save registers are also pushed to the stack upon entry to bar so

that these can be restored before returning. In principle, ATPCS and contiguous stacks can be

used alongside the IHGC as long as the stack is allocated as a single object. However, this can

result in programs with unintentionally higher memory requirements as observed in Chapter 7.

The problem occurs because the IHGC marks and scans the stack as any other heap object. So

objects referenced from stale stack frames below the sp will be considered as live even though

they are garbage. For instance, the local object allocated by bar is referenced from a stack location

as shown in Figure 8.3(b). The object becomes garbage when bar returns, but the pointer, which

is now below the sp, is still reachable from the IHGC’s point of view. Therefore, the garbage is

unnecessarily retained increasing memory requirements.

Hardware garbage collectors are often used alongside contiguous function call stacks [112,

113, 167]. These collectors manage the stack differently from other heap objects to ensure that

stale stack frames are not scanned during marking. For example, the collector only scans the

function call stack up to the sp and simply ignores, i.e. does not scan, stale stack frames. But

compared to the IHGC, this approach has two drawbacks. First, treating certain objects, like

the stack, differently increases hardware complexity because the collector’s operation becomes

dependent on the object’s type. And second, the memory locations in stale stack frames are not

zeroed after the sp is adjusted. In practice, the program can easily access the old values, including

pointers, in stale stack frames, so the system would reach an inconsistent state if the IHGC only

marks the stack up to the sp. This is because objects referenced from stale stack frames would

be reclaimed although technically they are still reachable. Clearly, programs that mistakenly

or maliciously use the pointers stored in stale stack frames could compromise the collector. In

summary, the IHGC does not manage contiguous stacks differently as this makes it difficult to

efficiently guarantee the system’s stability and reliability.

8.2.3.2 Linked Stack

Contiguous stacks can be operated efficiently, but large memory blocks must be preallocated

for each stack although the memory may not ultimately be needed. Also, the stack overflows

when the amount of data pushed onto it exceeds its capacity; this is a common source of bugs in

embedded devices. For these reasons, computer systems have previously relied on linked stacks

instead [68, 96]. With this approach, each frame is dynamically allocated individually upon

entering a function. The frames are chained using pointers such that the stack forms a singly-

linked list with the sp always referencing the top frame as shown in Figure 8.4(a). Linked stacks

can be used in BeyondRISC procedure calls to ensure that the IHGC never marks and scans

stale frames. This is because, as illustrated in Figure 8.4(b), stack frames become unreachable as

soon as the function returns, so the IHGC can reclaim the frame object without delay along with

any unused local object referenced from that stack frame only. As a result, the stack is a truly

123

CHAPTER 8. GARBAGE COLLECTION IN INSTRUCTION SET DESIGN

Previous Stack Frame

Callee Save

Registers

foo()

Local

Variables

Arguments

for bar()

Callee Save

Registers

bar()

Local

Variables

Local bar

Object

sp

(a) Stack layout after a function call to bar from foo.

Previous Stack Frame

Callee Save

Registers

foo()

Local

Variables

Arguments

for bar()

sp

(b) Stack layout after returning from bar to foo.

Figure 8.4: Stack layout using linked stack frames after a function foo calls bar. The stack is
allocated as a disjoint list of stack frames. bar’s stack frame is no longer reachable when the
function returns. Therefore, the collector reclaims dynamically allocated objects referenced from
local variables in the callee’s stack frame.

dynamic data structure that only uses as much space as necessary, can be managed as any other

heap object and does not compromise the system’s stability.

A common criticism of linked stacks is the performance overhead of a dynamic allocation on

function entry and freeing before returning. However, the overhead of allocating an object in the

IHGC is negligible as the operation normally lasts about one memory cycle only. Also, the cost of

freeing the stack frame object is eliminated because the collector automatically takes care of this

in the background. Therefore, we expect the performance of linked stacks on a system with the

IHGC to be comparable to ATPCS’s contiguous stacks.

A disadvantage of using linked stacks alongside an existing architecture with the IHGC is the

need for new instructions to efficiently operate the stack. For example, the ARMv6-M architecture

must be extended with instructions to quickly allocate, enter and exit a stack frame. In addition,

linked stacks can cause high volumes of stack frame allocations in some programs. For instance,

124

8.2. ARCHITECTURAL CHALLENGES

1 int fac(int n) {

2 if (n == 0)

3 return 1;

4 else

5 return (n * fac(n - 1));

6 }

Listing 8.2: Code fragment from BEEBS

implementing factorial recursively [130].

1 int fib(int i) {

2 if (i == 0) return 1;

3 if (i == 1) return 1;

4

5 return fib(i - 1) + fib(i - 2);

6 }

Listing 8.3: Code fragment from BEEBS

implementing Fibonacci recursively [130].

the recursive functions in Listing 8.2 and Listing 8.3 from the BEEBS benchmarks allocate very

deep call stacks in a short time [130]. These programs put excessive pressure on the collector and

can result in occasional pauses. However, extreme recursive behavior is unusual in embedded

systems because programmers can often avoid it with little effort and compilers can minimize

stack frame allocations using optimizations like inlining.

8.2.3.3 Stacklets

Linked stacks are extremely flexible, but they incur high performance overheads in conventional

computer architectures because the program must execute in software the time-consuming,

dynamic allocation and free routines for each stack frame. This motivated researchers in parallel

computing to propose implementing stacks as chains of stacklets [69, 70]. Each stacklet, also

called a segment [64], is a contiguous block of memory that can accommodate several stack frames.

When calling a function, the program checks whether there is sufficient space in the current top

stacklet, i.e. the object referenced by the sp, to store the callee’s stack frame. The check is simple

as it only involves comparing the sp with the size of the top stacklet. If there is sufficient space,

then the sp is simply decremented to make room for the callee’s stack frame in the top stacklet as

shown in Figure 8.5(a). Otherwise, a new stacklet is dynamically allocated to place the callee’s

stack frame as depicted in Figure 8.6(a). The new stacklet becomes the top stacklet and it is

linked to the existing chain of stacklets using pointers.

Stacklets are a compromise between contiguous and linked stacks. Compared to contiguous

stacks, stacklets prevent local garbage objects referenced by stale stack frames from remaining

in memory for a long time. This is because each stacklet is relatively small, so they frequently

become unreachable objects that can be reclaimed as the program returns from functions. For

example, Figure 8.6(b) shows that the stacklet containing bar’s stack frame becomes unreachable

as soon as bar returns since the top stacklet is popped off. Therefore, local garbage objects

referenced from bar’s frame can also be reclaimed. Compared to linked stacks, stacklets reduce

the volume of dynamic allocations and mitigate the impact of recursion because a single stacklet

contains stack frames from multiple function calls. But unlike linked stacks, stacklets occasionally

125

CHAPTER 8. GARBAGE COLLECTION IN INSTRUCTION SET DESIGN

Previous Stacklet

Callee Save

Registers

Top Stacklet

Local

Variables

Arguments

for bar()

Callee Save

Registers

Local

Variables

Local bar

Object

sp

bar()

foo()

Unused

Stacklet Space

(a) Stack layout after a function call to bar from foo.

Previous Stacklet

Callee Save

Registers

Top Stacklet

Local

Variables

Arguments

for bar()

Callee Save

Registers

Local

Variables

Local bar

Object

sp

foo()

Unused

Stacklet Space

(b) Stack layout after returning from bar to foo.

Figure 8.5: Stack layout using stacklets after a function foo calls bar. The current top stacklet
has enough space to accommodate bar’s stack frame, so a new stacklet is not allocated. The
local object will not be reclaimed by the collector until the pointer in bar’s stale stack frame is
overwritten or the current top stacklet is exited.

retain garbage for longer than necessary as unused local objects can be referenced from stale

stack frames in the top stacklet. For instance, Figure 8.5(b) shows that bar’s stack frame, and

the local object that it references, remain reachable from the IHGC’s point of view when bar

returns. This is because the top stacklet is not popped off the stack as it also contains foo’s stack

frame, i.e. bar’s caller. Increasing the size of each stacklet decreases performance costs as less

dynamic memory allocations are performed. However, larger stacklets also increase the likelihood

that local garbage objects are unnecessarily retained for longer as stacklets are popped off less

frequently.

The IHGC facilitates implementing stacklets because the size of the top stacklet is always

known: it is in the directory. So an instruction can be added to ARMv6-M or BeyondRISC to

easily check whether a stack frame fits within the current top stacklet or a new stacklet must be

dynamically allocated. To achieve this, the instruction simply compares the size of the callee’s

126

8.2. ARCHITECTURAL CHALLENGES

Previous Stacklet

Callee Save

Registers

Local

Variables

Arguments

for bar()

Callee Save

Registers

Top Stacklet

Local

Variables

Local bar

Object

sp

bar()

foo()

Previous

Stack Frames

Unused

Stacklet Space

(a) Stack layout after a function call to bar from foo.

Top Stacklet

Callee Save

Registers

Local

Variables

Arguments

for bar()

sp

foo()

Previous

Stack Frames

(b) Stack layout after returning from bar to foo.

Figure 8.6: Stack layout using stacklets after a function foo calls bar. A new stacklet is dynam-
ically allocated at the start of bar because the function’s stack frame does not fit within the
previous top stacklet. The collector reclaims the new top stacklet and the locally referenced object
when bar returns.

stack frame with the size of the top stacklet minus the sp offset. Therefore, stacklets can be

efficiently implemented alongside the IHGC.

8.2.4 Exception and Interrupt Handling

The ARMv6-M architecture handles exceptions and interrupts using hardware that implements

the ATPCS. When an exception or interrupt occurs, the hardware automatically pushes onto

the function call stack the current context, that is, the registers that are not restored by callees

before returning. These include the function argument registers (r0-r3), lr and pc. Execution then

jumps to a preconfigured handler for the exception or interrupt. Therefore, the handler can be

implemented as an ATPCS-compliant function call which performs the usual stack manipulations

on entry and before returning. However, this mechanism has the same drawbacks of ATPCS.

It relies on contiguous function call stacks, so garbage memory can be unnecessarily retained

127

CHAPTER 8. GARBAGE COLLECTION IN INSTRUCTION SET DESIGN

for longer than expected increasing memory requirements as explained in Section 8.2.3.1. As a

result, we consider architectural changes to eliminate ATPCS’s reliance on contiguous stacks

when entering interrupt and exception handlers.

A naive solution is to modify the hardware so that it automatically allocates an object and

stores the register context in that object when entering an interrupt or exception handler. But,

unless we always use the hard real-time analysis from Chapter 6, dynamic allocations can

result in collection pauses, so there could be a delay in entering the handler function. This is

unacceptable as interrupt requests are extremely time-critical. Allocating when an exception

arises can also result in system failure. For example, an allocation failure could have given rise

to the exception due to an out-of-memory condition. Therefore, relying on dynamic allocations to

enter an exception or interrupt handler is not ideal.

A better alternative to eliminate ATPCS’s reliance on contiguous stacks is using banked

registers to store the register context when interrupts and exceptions occur. The processor has

multiple copies of the registers, but only the copy indicated by the execution mode is visible. Thus

the BeyondRISC architecture has three modes: NORMAL, EXCEPTION and INTERRUPT. The user’s

program is executed in NORMAL mode. The mode is changed to EXCEPTION when an instruction

gives rise to an exception, such as division by 0. The EXCEPTION register set is then used to

execute the exception handler. INTERRUPT mode is entered and its corresponding register set is

used when an interrupt occurs while the processor is in either NORMAL or EXCEPTION mode.

Previous architectures implement similar approaches to interrupt and exception handling.

Examples include the Atlas computer [99], earlier ARM revisions that implement Fast Interrupts

(FIQ) [16, 18], and, to a limited extent, the ARMv6-M architecture which banks the sp [20].

The main benefit of banked registers is that exception and interrupt handling does not rely on

contiguous stacks and collection pauses never occur when entering handlers as allocations are

not performed at that time. The handler could still introduce pauses if it uses linked stacks or

stacklets, but the hardware does not cause involuntary pauses when entering the handler. Also,

entering and exiting interrupt handlers is very fast because no registers have to be saved or

restored from memory. The tradeoff is that BeyondRISC cannot nest interrupt handlers which

is desirable in applications where there are complex priority relationships between multiple

interrupt sources. Another problem is that it is difficult to extend existing architectures, such as

ARMv6-M, to use a new exception and interrupt model.

8.2.5 I/O Devices

The ARMv6-M architecture relies on Memory-Mapped I/O (MMIO) for the processor to interface

with peripheral devices. MMIO associates the registers and memory of I/O devices with addresses

in memory. Normally, the addresses mapped to I/O devices are documented in the processor’s

reference manual and are hard-coded in software. Accessing an I/O device involves casting a

hard-coded integer address into a pointer. Then the regular memory access instructions can be

128

8.2. ARCHITECTURAL CHALLENGES

used to interface with the peripheral. Clearly, this is problematic for the IHGC whose strict type

system does not allow casting values from integer to pointer, so we cannot rely on the traditional

MMIO approach.

We provide access to I/O devices using Object-Mapped I/O (OMIO). The hardware maps each

device to an object handle at reset. The handles are then used to construct pointers that are made

available to the processor before the system boots. For example, a system with three devices would

allocate that same number of object handles at reset. The handles are then used to construct

pointers that are provided to the program via the architectural registers or a preallocated array

in memory. The I/O devices can be accessed using these pointers along with the regular memory

load and store instructions. As a result, type conversions are no longer required, so OMIO can be

used with the IHGC.

An important benefit of OMIO is that the registers and memory for I/O devices do not need to

be considered as part of the roots. The objects corresponding to mapped I/O devices will simply be

marked and scanned as if they were memory locations. Thus, the IHGC discovers objects refer-

enced from I/O registers, like a pointer to an array stored in a DMA register, without programmer

intervention. OMIO also facilitates controlling access to I/O devices because processes cannot

access the devices’s registers and memory if they do not have the relevant pointers. Normally,

access to the pointers is controlled by an Operating System (OS) which shares the pointers with

individual processes depending on the configured permissions.

In our experience, OMIO can be easily integrated into BeyondRISC and the ARMv6-M

architecture. The only drawback is that some existing system software will no longer operate

correctly because they use MMIO. Nevertheless, modern embedded software normally relies on

a Hardware Abstraction Layer (HAL) library that provides a high-level interface over the I/O

device drivers. The HAL and the drivers themselves are generally developed and maintained by

the hardware vendor. This facilitates software development because most programmers do not

need to be aware of the platform’s configuration details and can instead focus on writing their

application. This model is also beneficial from our perspective because migrating the software

from MMIO to OMIO only requires self-contained changes to the HAL.

8.2.6 Linking Programs Statically

In IHGC systems, the program’s code is contained in objects that receive the same collection

treatment during marking as any other object. That is, the objects are marked and later scanned

in search for pointers if their deep flag is set as described in Chapter 5. The IHGC does not scan

code objects during marking if they do not contain pointers. So it is ideal to eliminate pointers

from code objects because this reduces the amount of collection work performed to complete a

collection cycle.

Most embedded software is statically linked meaning that all the procedures and variables

used by the program can be resolved at compile-time and are included in the executable. In

129

CHAPTER 8. GARBAGE COLLECTION IN INSTRUCTION SET DESIGN

A B C D

(a) Global variables grouped into a section.

A

C

B

D

(b) Global variables organized using an array.

Figure 8.7: Existing compilers group global variables into a contiguous chunk of memory often
called a section, such as data or bss. But in the IHGC, it is ideal to allocate an array of globals.
Variables of scalar type, such as integers A and C, are stored directly in the array. Variables of
complex types, like strings B and D, are allocated as independent objects referenced from the
array of globals.

this case, compilers often include pointers alongside code to improve performance and reduce

code size. For example, this technique is widely used by the LLVM backend for the ARMv6-M

architecture because the Thumb instructions have very short immediate ranges that make it

difficult to efficiently perform address calculations relative to a base pointer, like the pc. But the

pointers introduced in code objects by static linking strategies unnecessarily increase collection

work. Fortunately, avoiding this problem using LLVM is simple as the compiler can be configured

to generate code using a position-independent strategy for both the BeyondRISC and ARMv6-

M architectures. Position-independent compilation does not place pointers within code objects

and does not incur performance penalties in BeyondRISC, but it does when emitting Thumb

instructions as explained before.

Another consideration when statically linking programs for an IHGC system is the organiza-

tion of global variables into objects. Traditional linkers group global variables into sections, such

as data and bss, that are loaded into memory before the program starts executing. Each section

is a contiguous chunk of memory that the program indexes to access the individual variables

as shown in Figure 8.7(a). However, this arrangement does not take advantage of the IHGC’s

features. The memory access bounds of each object would not be automatically checked by the

hardware, so errors are not easily detected. Also, the aggregate size of all global objects in large

programs is likely to exceed the addressable memory by a pointer offset. To solve these issues, we

instead organize global objects using an array as shown in Figure 8.7(b). Each global variable

of scalar type, like an integer, is stored directly into the array and can be accessed by simple

indexing. Global variables of more complex data types, like strings, are allocated as separate

objects that are referenced from the array. Thus, accessing these objects requires following an

indirection through the array of globals.

Our proposed solution for organizing the globals can be efficiently implemented using both

BeyondRISC and ARMv6-M architectures. In BeyondRISC, the array of globals is referenced by a

special-purpose ep register. The global variables are accessed efficiently by indexing the array of

130

8.3. CASE STUDIES

1 #define free(x)
2 #define calloc(n, e) malloc((n) * (e))
3

4 __attribute__((naked)) void *malloc(size_t n) {
5 __asm volatile (
6 "newm r0, r0 \n"
7 "ret \n"
8);
9 }

Listing 8.4: malloc, calloc and free implementation in an architecture with the IHGC.

globals using instructions that have the ep as an implicit operand and an explicit offset operand.

A similar strategy can also be used in the ARMv6-M architecture although this might require a

few new instructions to reduce overheads.

8.3 Case Studies

We evaluated the impact of our proposed architectural changes on existing programs. We com-

piled the benchmarks from Chapter 7 using our modified LLVM compiler and ran them on a

functional simulator for BeyondRISC. Also, we ported popular open-source software libraries to

our platform. Through this experience, we outline the steps required to port existing programs

to an architecture with the IHGC and assess the difficulties encountered. We are particularly

interested in identifying concrete code fragments that conflict with the IHGC and how these

compatibility problems can be addressed.

8.3.1 BEEBS and TACLe Benchmark Suites

As described in Section 7.2, the BEEBS and TACLe benchmark suites are largely composed

of small, self-contained programs running classic algorithms like quicksort. These benchmarks

are entirely written in C and occasionally rely on calls to the standard library explicit memory

management functions malloc, calloc, and free. So our porting work was limited to replacing

the implementation of these functions at either the linking or preprocessing stages. As shown in

Listing 8.4, the BeyondRISC malloc consists of a newm and procedure return instructions. calloc

is replaced by a call to malloc using the C preprocessor while calls to free are simply eliminated.

calloc no longer requires zeroing the allocated memory because this is automatically performed

in the background by the IHGC. No other changes to the existing benchmark source code were

required to compile and run the programs successfully.

Replacing the malloc, calloc and free functions with an IHGC implementation has three

main benefits. First, the C standard library memory management interface is no longer explicit.

Calls to free are not necessary because the IHGC automatically reclaims the memory. Second,

the run-time of memory management operations decreases significantly when compared to

131

CHAPTER 8. GARBAGE COLLECTION IN INSTRUCTION SET DESIGN

1 void *mempcpy(void *dst0, const void *src0, size_t len0) {
2 char *dst = (char *)dst0;
3 char *src = (char *)src0;
4

5 while (len0--) {
6 *dst++ = *src++;
7 }
8

9 return dst;
10 }

Listing 8.5: Implementation of the C standard library function memcpy from Newlib [138].

implementations like dlmalloc and nano-malloc. In fact, our BeyondRISC implementation could

be optimized further by enabling malloc to be inlined. The third benefit is that the program’s

code size and space for statically allocated data decrease substantially. For example, dlmalloc

requires about 2 KB of code and over 1 KB for static data when compiled with a minimal set of

features. In contrast, an implementation of malloc, calloc and free alongside the IHGC only

requires a handful of instructions and no statically allocated data.

8.3.2 FreeRTOS and Mbed TLS

We ported the open-source software libraries FreeRTOS and Mbed TLS to our simulated

BeyondRISC platform. FreeRTOS is a Real-Time Operating System (RTOS) kernel that is widely

used in embedded devices [11]. The software is mostly written in C with some architecture-specific

assembly functions for core features like scheduling and timers. Mbed TLS is an implementation

of the TLS protocol and cryptographic algorithms to establish secure communications over a

network [22]. We developed a program that uses both FreeRTOS and Mbed TLS to establish a

secure channel between the BeyondRISC system and a host computer over a simulated serial

device. Our program exercises and demonstrates the use of our proposals to handle interrupts,

exceptions and I/O devices alongside the IHGC.

FreeRTOS and Mbed TLS both rely on explicit memory management based on the traditional

malloc, calloc and free interface. But they do not make any assumptions about the underlying

memory management algorithm. In fact, FreeRTOS supplies five different memory management

algorithms that can be easily configured out-of-the-box [12]. We simply configured our program

to use the IHGC-based malloc, calloc and free implementation from Listing 8.4. FreeRTOS

and Mbed TLS also have dependencies on the C standard library functions memcpy and memmove

to copy blocks of memory. In their simplest form, these functions are implemented to copy

memory one byte at a time as shown in Listing 8.5 from the Newlib libc [138]. However, such

implementations are unsuitable for a system with the IHGC because the tag information, which

is maintained in memory at word granularity, is not preserved when pointers are copied one byte

at a time. To solve this problem, we replaced the default memcpy and memmove implementation

132

8.3. CASE STUDIES

1 pxTopOfStack = &(pxNewTCB->pxStack[ulStackDepth - (uint32_t)1]);
2 pxTopOfStack = (StackType_t *)(pxTopOfStack & ∼portBYTE_ALIGNMENT_MASK);

Listing 8.6: FreeRTOS calculating the address of the last word in a contiguous stack [11].

with a version that copies memory one word at a time when the locations are aligned to a word

boundary.

We developed assembly code that implements architecture-specific components of FreeRTOS.

These include: the startup file, drivers for our OMIO timer and serial devices, and stack handling

at thread creation and context switch. The changes are all self-contained and none of these

required modifying the core FreeRTOS source code. There are two important implications for

our program. First, interrupt handling routines are permitted to dynamically allocate memory.

Traditional explicit memory managers cannot be used in interrupt handlers because they can

potentially run for a long time. Also, these memory managers are often unreliable and can fail

due to fragmentation. In contrast, allocations with the IHGC are fast and do not suffer from

fragmentation. So we implemented the driver for our serial device such that it dynamically

allocates memory buffers on-demand to hold the incoming network data.

The second implication for our program is that the code for handling the function call stack

is simplified. FreeRTOS assumes that the stack is contiguous, so the stack size needs to be

fixed at thread creation. To mitigate overflows, FreeRTOS can be configured to check simple

overflow conditions when a context switch occurs. However, the checks are unreliable and incur

performance overheads. Also, stack overflows are likely to be caught after they occur, so the

program could have already corrupted the system’s memory. These problems are completely

eliminated when FreeRTOS runs on BeyondRISC because the stack is linked and the IHGC

performs the overflow checks automatically for every memory access instruction. The stack

size no longer needs to be fixed and the overheads of stack overflow checking in software are

redundant. In fact, we completely disabled the checks because the code is incompatible with the

IHGC’s approach to memory management.

Only two lines of FreeRTOS’s core source code needed changing for the program to execute

correctly on BeyondRISC. The problematic lines, shown in Listing 8.6, attempt to calculate the

address of the last word in a contiguous stack during thread creation. Line 1 obtains a pointer

to the last byte of the allocated stack space. A bitwise-and is then performed in line 2 with the

pointer and a bit pattern as operands. The result of the calculation is stored on a data structure

that represents the newly created thread. FreeRTOS uses this information to perform stack

overflow checks during a context switch. However, BeyondRISC’s bitwise-and instruction gives

rise to an exception when any of the operands is a pointer. As a result, we deleted these two

lines of code as the stack overflow checks are automatically performed by the IHGC and to avoid

failures at run-time.

In summary, porting FreeRTOS and Mbed TLS to an architecture with the IHGC requires

133

CHAPTER 8. GARBAGE COLLECTION IN INSTRUCTION SET DESIGN

1 if ((txt[index - 1] == ’\n’ || txt[index - 1] == ’\r’) && txt[index] == ’\0’) {
2 ...
3 }

Listing 8.7: Memory access bug in LittlevGL’s source code [95].

minimal changes to the software’s core source code. Only one change was needed to ensure that

bitwise operations are not used on pointers. The IHGC provides benefits, such as allocations in

interrupt handlers and the elimination of stack overflows, that are difficult to match in other

systems.

8.3.3 LittlevGL

LittlevGL is a library used to implement embedded graphical user interfaces, such as those

found in printers and home appliances [95]. We developed a C program based on LittlevGL’s

benchmarking and demonstration code. This software also relies on the explicit malloc, calloc

and free memory management interface. But LittlevGL wraps every call to these functions with

its own memory management code. Before calling malloc, the library increases the requested

allocation size with space to store a header alongside the program’s data. The header contains

the object size and a used flag indicating whether the object has been freed.

LittlevGL’s wrapper code around the underlying memory management algorithm performs

arithmetic and bitwise operations on pointers. This gives rise to exceptions in an IHGC system,

so the wrapper was replaced with the IHGC implementation in Listing 8.4. But this change

uncovered memory access bugs in LittlevGL’s source code that were hidden by the original

memory management wrapper. For example, Listing 8.7 shows a fragment of code where the

IHGC raises an out-of-bounds memory access exception. The variable txt is a pointer to a

dynamically allocated buffer containing a string. So a problem occurs when the txt buffer is of

zero length; the variable index is 0 and the array element accessed is txt[-1] which is clearly an

error although LittlevGL’s developers already published a patch that resolves the problem [94].

The IHGC raises an exception for such memory accesses, but the operation mistakenly results in

a load of the object’s last header byte when using LittlevGL’s wrapper.

A related problem is that the original memory management wrapper code pads the requested

allocation such that the new object’s size is aligned to a word boundary. For instance, allocating

five bytes actually results in a 12 byte object in a 32-bit system due to the padding and header.

However, this practice hides out-of-bounds memory access bugs by small amounts e.g. 1, 2 or 3

bytes if the word size is 4 bytes. For example, accessing the byte at index 7 in the 5 byte object

would not cause as an out-of-bounds error, although it technically is a failure, because of the

padding. We eliminated this risk because our program relies on the IHGC, which automatically

checks bounds at byte granularity, instead of LittlevGL’s memory management wrapper.

The graphics library uses data types that are represented as 8-bit or 16-bit elements. For

134

8.3. CASE STUDIES

1 // Words with small integers have their least significant bit set to 1.
2 // These integers can be represented in 31-bits so they are stored as
3 // individual words
4 static inline bool MP_OBJ_IS_SMALL_INT(mp_const_obj_t o) {
5 return ((((mp_int_t)(o)) & 1) != 0);
6 }
7 #define MP_OBJ_SMALL_INT_VALUE(o) (((mp_int_t)(o)) >> 1)
8 #define MP_OBJ_NEW_SMALL_INT(o) ((mp_obj_t)((((mp_uint_t)(o)) << 1) | 1))
9

10 // Pointers are stored word-aligned, so their least significant two bits are
11 // always 0
12 static inline bool MP_OBJ_IS_OBJ(mp_const_obj_t o) {
13 return ((((mp_int_t)(o)) & 3) == 0);
14 }

Listing 8.8: Code fragment from MicroPython’s interpreter performing bitwise operations on
arbitrary words to decode type information [115].

example, a color is represented as a 16-bit integer. Therefore, our program occasionally performs

misaligned memory accesses when loading or storing into data structures. That is, the address of

a memory access is not aligned to the machine’s natural word boundary e.g. 4 bytes in a 32-bit

processor. This is problematic for the IHGC because misaligned word accesses can result in the

program partially loading or storing a pointer. Unfortunately, this may be used either by mistake

or maliciously to modify a pointer handle, thereby compromising the system’s stability. To prevent

these problems the resulting type from a misaligned load is always set to data instead of pointer.

When performing a misaligned store, we always set the type tag of the affected word in memory

to data.

In summary, porting LittlevGL required significant changes to replace the library’s memory

management wrapper code. However, the changes were self-contained and using the IHGC

instead helped us uncover bugs in other parts of the software. Additionally, small changes to our

architecture were required to ensure that misaligned memory accesses succeed alongside the

IHGC without compromising correctness.

8.3.4 MicroPython

MicroPython is an open-source implementation of the Python programming language for

embedded devices [115]. The software consists of two main components: compiler and interpreter.

The compiler transforms Python scripts into a bytecode representation. The interpreter is a

stack-based virtual machine that executes bytecode programs. For simplicity, we only ported the

interpreter to our simulated BeyondRISC platform. Python scripts are precompiled on a Linux

computer using MicroPython’s compiler and loaded onto the simulator alongside the executable

for the interpreter. For these experiments, we set up the interpreter to run the same scripts used

in Chapter 7 from the Python Benchmark Suite [66].

135

CHAPTER 8. GARBAGE COLLECTION IN INSTRUCTION SET DESIGN

The interpreter is mostly written in C, so we successfully compiled it using LLVM. Two main

adaptations were required. First, we added BeyondRISC assembly to implement MicroPython’s

architecture-specific functions, such as exception handling. Second, the interpreter relies on a

garbage collector to automatically manage the memory. By default, MicroPython is configured to

use a software garbage collector implementing a basic stop-the-world mark-sweep algorithm. We

reconfigured MicroPython’s build system to replace the default collector with the IHGC using

the malloc, calloc and free implementation from Listing 8.4. Neither of these two changes

required modifying MicroPython’s core source code beyond what is typically necessary to port the

software to a new platform.

MicroPython uses the two least significant bits in a word to encode type information. Specifi-

cally, 31-bit integers have their least significant bit set to 1. Pointers to objects are always stored

in memory word-aligned, so the least significant two bits are 0 in a 32-bit system. Encoding

types in this fashion requires casting words between pointer and integer types as implemented

by the MicroPython code shown in Listing 8.8. Unfortunately, this conflicts with the IHGC’s

type system as discussed in Section 8.2.2, so it was necessary to modify the interpreter’s source

code to eliminate the execution of bitwise and arithmetic operations with operands of illegal

type. Specifically, we replaced the C preprocessor macros and functions shown in Listing 8.8

with assembly code that checks the IHGC tag bit to determine whether the word is a value with

primitive type, like a small integer, or a pointer to an object.

During experimentation, we discovered bugs in MicroPython thanks to the IHGC’s run-time

checks. The bugs were caused by MicroPython’s use of operations with undefined behavior ac-

cording to the C standard. These operations gave rise to out-of-bounds memory access exceptions

in the IHGC system, but appeared to execute successfully in a conventional processor. We de-

veloped fixes for these issues and reported the failures to the MicroPython developers who have

acknowledged the problem [9].

The changes to port MicroPython to BeyondRISC are self-contained. Also, the IHGC improved

the software’s reliability by uncovering bugs in the source code. Compared to our MicroPython

port from Chapter 7, the BeyondRISC port has lower memory requirements because the IHGC is

an exact collector and the stack is linked instead of contiguous. In addition, the toolchain does

not store pointers in code objects, so the amount of collection work is reduced substantially.

8.3.4.1 Modern Languages and the IHGC

By porting MicroPython to BeyondRISC, we demonstrated how Python, a modern programming

language, benefits from running on a system with the IHGC. First, the interpreter is simplified

because the garbage collector no longer needs to be implemented in software. Second, the

performance increases because the collector runs in the background concurrently with the

application, so the processor can be fully utilized to execute the user’s program as discussed in

Chapter 7. And third, the system is safer and more reliable as the IHGC automatically checks

136

8.4. SUMMARY

common causes of memory access errors.

The IHGC’s benefits can be extended to other modern programming languages that rely

on garbage collection. There is a growing ecosystem of modern languages such as JavaScript,

PHP, Perl and Julia. These are dynamically typed and interpreted like Python, so they can

be implemented in a fashion similar to MicroPython. There are many other garbage collected

modern languages, like Java, C# and Go, that are strictly typed and would also benefit from

the IHGC. Once again, these can be interpreted as MicroPython, but they can also be compiled

directly to machine code. For example, Ed Nutting, from the Trustworthy Systems Laboratory,

developed a tool to compile C# code directly into BeyondRISC machine instructions although

this work is not published. The resulting programs had a minimal runtime environment as the

collector was no longer in software. In conclusion, there is evidence showing that the IHGC can

be used alongside modern programming languages.

8.3.4.2 Concurrency, Continuations and the IHGC

Concurrency features have started to appear in modern programming languages. For example, Go

provides explicit support for managing the so called goroutines, or threads, along with message

passing via channels. These features rely on the garbage collector to relieve the programmer from

tedious tasks like reclaiming memory or closing unused channels as goroutines terminate. The

IHGC can clearly facilitate the efficient implementation of both features. Other programming

languages have adopted continuations. For instance, Python supports generators while C#

introduced asynchronous programming support with async and await. Continuations force the

runtime to keep track of the memory for multiple execution contexts which can be resumed at any

time. These can be difficult to manage as programs grow in complexity. Software garbage collectors

are known to mitigate these implementation problems of continuations at the expense of high

performance overheads [53]. Once again, the IHGC can help develop efficient implementations of

continuations because the memory management burden is no longer placed on the processor.

8.4 Summary

In this chapter we discussed the practical issues when integrating the IHGC into new and

existing ISAs. Specifically, we explained how instruction semantics and I/O device interfaces

can be adapted to work alongside the IHGC’s type system. We investigated how linked stacks,

stacklets and banked registers are used to implement function call stacks and interrupt handling

without obstructing the garbage collector. And we demonstrated how executables can be linked

to reduce garbage collection work and take advantage of the IHGC’s error-checking capabilities.

We explored these architectural features, through compiler design, to guarantee the system’s

correctness and reliability while broadly maintaining compatibility with existing software.

137

CHAPTER 8. GARBAGE COLLECTION IN INSTRUCTION SET DESIGN

We ported open-source software to our proposed BeyondRISC ISA to evaluate the architectural

changes discussed. We used a functional simulator and the LLVM compiler (with our BeyondRISC

backend) for these experiments. In general, we found that the required porting changes are

limited to replacing existing memory managers with an implementation using the IHGC. We

were seldom required to modify the program’s core source code except to fix software bugs or

eliminate arbitrary bitwise and arithmetic operations on pointers; nevertheless, the changes were

self-contained in both cases. We also discussed other features of modern programming languages,

like concurrency and continuations, that the IHGC helps to implement efficiently.

138

C
H

A
P

T
E

R

9
MICROARCHITECTURE OF THE IHGC

This chapter presents the microarchitecture of the IHGC alongside a pipelined processor. The

design takes into consideration the capabilities of the current fabrication technologies used in

embedded systems. We discuss the challenges of realizing the IHGC in hardware and estimate

the implementation costs and efficiency of our system in comparison to equivalent embedded

processors.

The proposed microarchitecture is based on approximations of the capabilities of VLSI

technology. This data, obtained from the literature and through experimentation, is used to make

informed design decisions and critically evaluate the hardware costs. The design is also used as

the basis of a simulation model to evaluate the system’s performance.

9.1 Overview

Several hardware components, including the main memory and register file, must be carefully

considered when realizing the IHGC in hardware. But the directory warrants special attention

as it accounts for most of the IHGC’s memory overheads. The directory is also in the critical path

of execution of every memory access instruction. Therefore, we need to ensure that the directory

implementation carefully balances performance requirements and hardware costs.

The most challenging aspect of the IHGC’s microarchitecture is minimizing contention within

the processor’s pipeline to access the directory. Modern embedded processors often have long

pipelines to enhance performance. In this case, more than one memory access instruction can be

in-flight at different stages of execution. But with the IHGC, all memory instructions require

accessing the directory at least once and often more times to, for example, mark pointers loaded

from memory. This causes pipeline stalls, and therefore delays, if the microarchitecture is not

designed correctly. For example, the 5-stage pipeline shown in Figure 9.1 relies on a directory

139

CHAPTER 9. MICROARCHITECTURE OF THE IHGC

Fetch Decode Execute Writeback HousekeepClock
Cycle

STORE ADD LOAD

STORE ADD LOAD

STORE ! ADD LOAD !

t0

t1

t2

(a) Directory contention due to load instructions.

Fetch Decode Execute Writeback HousekeepClock
Cycle

LOAD ADD STORE

LOAD ADD STORE

LOAD ! ADD STORE !

t0

t1

t2

(b) Directory contention due to store instructions.

Figure 9.1: Multiple pipeline stages in the processor simultaneously require using the directory
when executing memory access instructions. The pipeline must occasionally stall if only one
directory record can be accessed per memory cycle. The illustrations show two cases where such
stalls occur. The dashed boxes are instructions that require a directory access at that pipeline
stage. The boxes with the ’!’ represent pipeline stages that potentially stall during a clock cycle
due to directory contention.

that supports accessing one record per clock cycle. The pipeline has a housekeep stage that marks

pointers loaded from memory and sets an object’s deep flag when storing pointers as required by

the IHGC. Delays can occur in two cases at clock cycle t2:

1. A load instruction is at the housekeep stage while another memory access instruction is

at the execute stage as illustrated in Figure 9.1(a). In this implementation, the housekeep

stage requires accessing the directory as it marks loaded pointers from memory. However,

the execute stage also uses the directory to load the address of the object accessed.

2. A store instruction is at the housekeep stage while another memory access instruction is

at the execute stage as shown in Figure 9.1(b). The housekeep stage sets the deep flag of the

object accessed when the word written is a pointer, so the directory is required. But the

execute stage also needs the directory to load the address of the object being accessed.

In both cases, one of the pipeline stages must stall due to contention in the directory. The

processor model used for the performance evaluation in Chapter 7 did not suffer from these prob-

140

9.2. BACKGROUND

Processor 16 nm 28 nm 40 nm 90 nm 180 nm

M0 X X X
M0+ X X X
M3 X X X
M4 X X X
M23 X X
M33 X X X

M35P X X X
M7 X X X

Table 9.1: Process nodes used to manufacture ARM Cortex-M processors [15].

lems because it implements a short 3-stage pipeline where only one memory access was in-flight.

We eliminate such simplifying assumptions in this chapter by exploring the microarchitecture of

IHGC systems with longer processor pipelines.

We aim to propose a realistic microarchitecture. Therefore, an SRAM compiler is used to guide

the design of the directory based on the capabilities of the fabrication technology. Information

from the literature is also used to estimate the hardware costs and operating clock frequency of

our proposal and to compare them with existing embedded processors.

9.2 Background

In this section, we provide background information about two aspects that significantly influence

the IHGC microarchitecture: the process technology and memory.

9.2.1 Process Technology

Process technology refers to a specific semiconductor process and its associated design rules used

for the fabrication of integrated circuits. Each process technology, also called a process node,

is named according to its minimum feature size (e.g. 28 nm, 40 nm, 65 nm, etc). For example,

the International Technology Roadmap for Semiconductors (ITRS) traditionally defines the

process node as the minimum half-pitch of contacted lines in the lowermost metal layer (Metal

1) of the interconnect [154]. However, alternative metrics are often used by integrated circuit

manufacturers and foundries.

Process nodes of smaller geometries are regularly introduced to reduce area and power

consumption or achieve faster processing speeds. However, embedded systems are rarely manu-

factured using the most advanced process node available; older process nodes of larger geometries

are generally used instead. For example, the Cortex-M series of embedded processors licensed by

ARM are normally manufactured using 16 nm to 180 nm process nodes as shown in Table 9.1,

although the 10 nm process technology is currently available [176].

141

CHAPTER 9. MICROARCHITECTURE OF THE IHGC

M3

M4

M5

M6

M2
M1

V dd

GND

BL
BL

WL

Figure 9.2: Structure of a 6 transistor (6T) SRAM bit-cell.

9.2.2 Memory

Modern embedded processors often include fast on-chip memory. The amount of memory varies

depending on the intended application, but typically it ranges from a few KBs to 1 MB. The choice

of technology and the amount of memory must be considered carefully as embedded memories

often occupy over 50% of the total die area [83]. Ideally, the memory has low access latency, high

density and low power consumption, but these goals are generally conflicting.

Static RAM (SRAM) is the dominant on-chip memory technology used in embedded systems.

It is a fast memory that can be directly integrated with the CMOS logic, but it has relatively low

density compared to embedded dynamic RAM (eDRAM). An SRAM consists of a bit-cell array

along with peripheral circuits and control logic. A bit-cell stores one bit of information and is

usually implemented using 6 transistors (6T). However, alternative bit-cell designs with 4, 7, 8

and 10 transistors exist that have different properties with regards to density, timing, power,

reliability, etc [6, 63, 125].

The structure of the 6T bit-cell is shown in Figure 9.2. There are two access transistors (M1

and M2) and four transistors implementing two cross-coupled inverters that store the bit-cell’s

data. A word line (WL) and two bit lines (BL and BL) are used to read and write the bit-cell. The

WL is low when the bit-cell is in standby; the access transistors are disabled and the cell retains

the value written last. To read the cell, WL is driven high to enable the access transistors, then

the information is sensed at the bit lines by a sense amplifier. To write the cell, the bit value to

write and its complement are applied to BL and BL respectively, then WL is driven high. This

causes the value in the bit lines to override the previous state of the cross-coupled inverters.

The architecture of an SRAM is shown in Figure 9.3. The bit-cells are grouped into an array

where each word line (WL) corresponds to a different row. A decoder takes an address as an input

and drives high the word line containing the word of data to be read or written. Each pair of bit

142

9.2. BACKGROUND

Word Line
(WL)

Bit lines
(BL and BL)Bit-cell

D
ec

od
er

Column Multiplexer

Sense Amplifiers

Write Drivers

A
dd

re
ss

Data

Figure 9.3: Architecture of an SRAM.

lines (BL and BL) forms a column that is connected to the write drivers and sense amplifiers.

Rows often contain multiple data words to reduce the complexity of the address decoder and

the length of the bit lines [106]. Therefore, a column multiplexer is needed to connect the write

drivers and sense amplifiers to the correct word when reading and writing.

Multi-ported SRAMs can be constructed at the expense of additional hardware. These SRAMs

have more than one data and address port, so they support performing multiple read or write

operations to different addresses in the same memory cycle. SRAMs with two ports, also called

dual-ported, operated as normal memory devices can often be found in modern embedded systems

while SRAMs with more than two ports are used for specialized hardware like register files.

Multi-ported SRAMs require larger bit-cells due to the need for additional access transistors. For

example, the 8 transistor cell (8T) is used instead of the 6T cell for dual-port SRAMs. Also, each

additional port requires duplicating most of the peripheral circuitry and control logic, such as

the address decoder and column multiplexer. This increases hardware costs and access latency,

but the ability to complete multiple memory operations simultaneously can result in better

performance.

Nowadays, memory compilers are used to automatically generate SRAMs. Memory compilers

take advantage of the regular structure of SRAMs to produce designs for various configurations

and process nodes quickly. The compiler takes configuration files and a Process Design Kit (PDK)

as an input. Common configuration parameters include the word size, number of words and

number of ports. The PDK is a set of files that describe a process node and its associated design

143

CHAPTER 9. MICROARCHITECTURE OF THE IHGC

rules; it is usually provided by the foundry. On success, the memory compiler outputs files

describing the SRAM’s design along with its area, timing and power features. This information

is used to implement integrated circuits, but it is also extremely valuable for architectural and

microarchitectural design exploration.

The IHGC’s directory is a key component implemented with SRAM. Therefore, we use the

open-source memory compiler OpenRAM to automatically generate multiple SRAM configura-

tions [76]. The compiler’s output is used to guide the design of our proposed microarchitecture

and estimate its area. We also use FreePDK45 for all our experiments with OpenRAM [170].

FreePDK45 is an open-source PDK for a 45 nm process node. Its design rules are constructed

based on information collected from the ITRS and conference publications. Therefore, the gener-

ated SRAMs cannot be used for fabrication, but they are a reasonable approximation suitable for

VLSI research and microarchitectural design exploration.

9.3 Microarchitecture of an IHGC System

This section describes the microarchitecture of an IHGC system. Our aim is to design an embedded

processor implementing the BeyondRISC instruction set with the architectural features discussed

in Chapter 8.

9.3.1 Main Memory

The main memory stores the header word and contents of every allocated object. The IHGC uses

tagged memory to exactly distinguish pointers from data. So every word in memory contains 32

bits of data and a tag bit that indicates the type. For simplicity, we assume that all main memory

is on-chip; a common arrangement in modern embedded systems such as Nordic Semiconductor’s

nRF52832 [126], STMicroelectronic’s STM32F7 [172] and NXP’s i.MX RT1020 [128].

We implement the main memory using multiple single-ported SRAMs following common

industry practice. This is because a large SRAM with 33 bits per word generally has longer access

latency and higher power consumption compared to multiple smaller memories with equivalent

storage capacity. For example, we could use two SRAMs each with the same number of words.

The first SRAM has 16 bits per word and only stores data. The second has 17 bits per word to

accommodate 16 data bits and the tag. It is feasible to generate such SRAMs with a word size

that is not a power of two, e.g. 17 bits, using memory compilers, like OpenRAM, because unusual

word sizes are often required to implement memories with, for example, error correcting bits.

Many other arrangements for the main memory are also possible provided that they yield an

acceptable tradeoff between power consumption, area and timing delays.

144

9.3. MICROARCHITECTURE OF AN IHGC SYSTEM

Figure 9.4: Area of single- and dual-ported SRAMs as the word size increases. The memories are
2048 words deep generated using a 45 nm process node in all instances.

9.3.2 Directory

The directory stores metadata for allocated objects and maintenance information for the garbage

collector. It is in the critical path of execution of every memory access instruction, so the directory

must be fast. Additionally, memory access instructions occasionally require reading or writing the

directory more than once. Therefore, we must ensure that concurrent accesses to the directory do

not cause excessive pipeline stalls.

Our microarchitecture considers the directory as a self-contained component independent

from the processor’s main memory. This reduces contention as accesses to the directory and the

memory rely on physically separate hardware components that can be accessed in parallel. The

directory is implemented using two single-ported SRAM arrays clocked at the same speed as the

processor. The first SRAM stores the address and size of every object, while the second contains

the mark and deep flags along with the directory’s list component and another copy of every

object’s size. Thus, both memories have the same number of words, i.e. one per directory entry,

but their word sizes differ.

Implementing a large memory using two smaller SRAMs is a common technique to decrease

memory access delays at the expense of modest hardware costs. This also enables us to perform

two directory accesses, potentially using different handles, as each SRAM has its own read-

write port. Thus we can eliminate most stalls when pipelining the execution of memory access

instructions. For example, the address and size for a load instruction can be read from the first

SRAM while the deep flag of an object is set in the second SRAM as part of an earlier store.

Similarly, the pipeline can efficiently mark pointers loaded from main memory because the

object’s size is maintained in both SRAMs. The object size is required to check out-of-bounds

145

CHAPTER 9. MICROARCHITECTURE OF THE IHGC

errors while the main memory address to access is resolved for a load or store instruction. The

object size is also used to process a loaded pointer for marking because the size must be added to

the IHGC’s livesize. Both operations can be performed in parallel by maintaining two copies of

the size in separate SRAMs.

Our directory’s split design eliminates the most common pipeline stalls. However, contention

still persists in some infrequent situations as explained in Section 9.3.4.3. These issues can be

mitigated by implementing the directory using dual-ported SRAMs. But compared to single-

ported memories, dual-ported memories have much higher silicon area requirements. According

to our experiments with OpenRAM and FreePDK45, dual-ported SRAMs with one read-write

port and one read-only port use approximately twice the area of a single-ported SRAM as shown

in Figure 9.4. Another disadvantage of dual-ported memories is availability. The requirements of

key hardware components, such as memories and register files, vary little across many different

processors, so a market for pre-designed IP modules has developed. Engineers purchase these

IP models and use them in their designs instead of developing every single component from

scratch, thus saving time and reducing cost. However, the high overheads of dual-ported memories

have forced engineers to avoid their use in embedded systems, so the available supply of these

memories as IP modules is very limited. As a result, we avoided dual-ported memories in the

microarchitecture of our system.

9.3.3 IHGC State Machine

The microarchitecture of the IHGC’s state machine is discussed in this section. We consider the

main aspects that must be taken into account when realizing the state machine in the hardware.

9.3.3.1 States in the State Machine

The microarchitecture of the IHGC’s state machine is shown in Figure 9.5(b). Its structure closely

resembles the state machine in Figure 9.5(a) presented in the system-level description from

Chapter 5. There are a few minor changes to ensure that every state transition can be completed

in one memory cycle without pausing the processor.

• An Init state is added to set up the IHGC’s internal registers for a new collection cycle.

The collector visits this state once during each collection cycle to copy the contents of the

register file to the shadow registers before marking the roots.

• An End state is added to check for failure conditions when a collection cycle terminates.

During this state, the IHGC also notifies the processor, via an interrupt, that a collection

cycle was completed. This facilitates error detection and containment, for example when

the system has run out of memory, without increasing the complexity of the compact states.

146

9.3. MICROARCHITECTURE OF AN IHGC SYSTEM

Scan
Root

Check
& Mark

Root

Pop
Next

Object

Scan
Object
Word

Check
& Mark
Pointer

Load
Object
Info

Read
Word

Clear
Word

Zero
Word

Write
Word

Initialize/End Mark Roots
Mark Objects Compact

(a) System-level state machine.

Init

Scan
Root

Check
& Mark

Root

Pop
Next

Object

Scan
Object
Word

Check
& Mark
Pointer

Load
Object
Info

Check
Object
Info

Read
Word

Clear
Word

Zero
Word

Write
Word

End

(b) Microarchitectural state machine.

Figure 9.5: Comparing the system-level description of the IHGC state machine with its microar-
chitectural implementation.

• During the compact stage, the IHGC uses the Load Object Info state in Figure 9.5(a)

to inspect every object from the lowest memory address up to the heappoint. For each

object, the collector loads the header word from memory to obtain the handle which is then

used to load the object’s size along with its mark flag from the directory. If the object is

marked, the IHGC decides whether copying is needed. Otherwise, the unmarked object is

reclaimed by adding its handle to the free list and zeroing if necessary. These operations

require two memory cycles to complete because the directory load cannot be started before

the load of the header word from memory is completed. We eliminate this problem by

simplifying the former Load Object Info and adding a new state Check Object Info

as shown Figure 9.5(b). The simpler Load Object Info is only used to load the directory

metadata of the object being compacted. The new Check Object Info state uses the

previously loaded directory information to decide whether the object being processed is live,

take appropriate action and load the header word of the following object that the IHGC

needs to process. This eliminates the dependency between directory and memory accesses

and avoids pauses as the new state transitions can be performed in a single memory cycle.

Compared to the system from Chapter 7, the collection cycle of the modified IHGC state

147

CHAPTER 9. MICROARCHITECTURE OF THE IHGC

t0 t1 t2 t3

Read
delay

clk

addr 0x0004

cs

we

data out 0xBEEF

data in

Bit-cells at 0x0004 0xBEEF

IHGC state Scan Root Check & Mark Root Scan Root

Figure 9.6: Timing of IHGC state transitions using the directory’s synchronous memory interface.
The data transfer is coordinated by the clock (clk) signal. The memory also has address (addr),
chip select (cs), write enable (we), data out and data in signals.

machine has a slightly different run-time due to the addition of three states. But the general

structure of the state machine remained unchanged, so both versions of the IHGC are suitable for

hard real-time systems using the analysis technique described in Chapter 6. There are only two

minor differences when analyzing real-time programs when using the modified collector. First,

the constants used to construct the collector’s timing model must match the new state machine

implementation as described in Section 7.5.1. And second, the modified state machine operates

alongside a BeyondRISC processor instead of an ARM Cortex-M0, so the processor’s timing model

is different.

In summary, our proposed microarchitecture for the IHGC adds three states to the state

machine from Chapter 5. The modified IHGC state machine is also suitable for hard real-time

systems. The purpose of the new design is to facilitate the state machine’s implementation in

hardware and ensure that state transitions can be completed in a single memory cycle without

pausing the user’s program.

9.3.3.2 Timing of State Transitions

Modern microprocessors normally use synchronous memory interfaces where the data transfer is

coordinated by the clock. Figure 9.6 shows the operation of the synchronous interface implemented

by the SRAMs generated using OpenRAM [76]. To load a word from memory, the address must

be driven into the addr bus and the cs line set high. The SRAM samples the input signals at the

next rising edge of the clock and the loaded data is observed in data out after a read delay. For

example, the address 0x0004 in Figure 9.6 is sampled at time t1 and the loaded data 0xBEEF is

placed in data out before t2. Stores operate in a similar fashion as illustrated between t2 and t4

in Figure 9.7. The address and the data to store are driven into addr and data in respectively.

148

9.3. MICROARCHITECTURE OF AN IHGC SYSTEM

t0 t1 t2 t3 t4

Read
delay

Write
delay

clk

addr 0x0004 0x0004

cs

we

data out 0xBEEF

data in 0xCAFE

Bit-cells at 0x0004 0xBEEF 0xCAFE

Load buffer 0xBEEF

IHGC state Scan Root Check & Mark Root Check & Mark Root Scan Root

Figure 9.7: Timing of IHGC state transitions using the directory’s synchronous memory interface.
The shaded IHGC states represents a memory cycle allocated to the processor i.e. the collector is
paused. During this time, the data that the collector loaded from memory is buffered until the
next state transition occurs.

Also, cs and we lines are both set high. The memory samples these inputs at the next rising edge

of the clock, i.e. at t3, and the bit-cells corresponding to the word written change value after a

write delay.

Synchronous memory interfaces must be used carefully to avoid introducing program pauses

when implementing the IHGC’s state machine. This is because multiple clock cycles are required

to load data from memory. For example, in Figure 9.6 the load of 0xBEEF required two clock cycles

to complete: the inputs to the memory are driven before t1, but the result is only observed in

data out at t2. Unfortunately, we cannot allow state transitions that rely on memory to last

over one clock cycle as the collector’s state machine would eventually pause the processor and

consequently the user’s program.

Our proposed microarchitecture implements a simple look-ahead strategy to eliminate the

problem described above. During a state transition, it is always possible to decide whether the

next transition will require accessing the directory or main memory. For example, the transition

from Scan Root to Check & Mark Root at t1 in Figure 9.6 occurs when a root contains a pointer

with handle 0x0004 that needs to be processed for marking. At this time, it is already clear that

the collector needs to access the directory because the following transition, from Check & Mark

Root back to Scan Root (see Figure 9.5(b)), uses the mark flag to check whether handle 0x0004

is already marked. Therefore, we can implement the IHGC’s state machine to drive the inputs

to the directory one state transition ahead of when the data is actually needed. In our example,

the directory inputs to load the metadata for handle 0x0004 are applied to addr and cs by t1 as

shown in Figure 9.6. This ensures that the IHGC performs the following state transition from

149

CHAPTER 9. MICROARCHITECTURE OF THE IHGC

Fetch Decode Execute #0/
Address

Formation

Execute #1/
Main

Memory
Register

Writeback

Housekeep

Addr/Size
Mark/List/
Deep/Size

Register
File

Main Memory

Directory Processor Pipeline Other

Figure 9.8: Structure of the 5-stage pipeline for an in-order, single issue embedded processor. The
register file has four read and two write ports. The directory and main memory are implemented
using a collection of single-ported SRAMs. The dashed box indicates that register writeback and
housekeep are two components of a single pipeline stage.

Check & Mark Root to Scan Root in one clock cycle, i.e. by t2, as the load would have already

completed.

A related issue when accessing the memory is buffering. The operation of synchronous SRAMs

may cause data loaded from main memory or the directory to appear in data out when the IHGC

is paused due to interleaving. For example, in Figure 9.7 a load from the directory is initiated

at t1 due to the state transition from Scan Root to Check & Mark Root. But the processor is

using the memory during the next clock cycle, so the IHGC is paused and cannot immediately

use the loaded directory data in data out. To prevent losing the loaded data, we buffer it in a

register while the IHGC is paused as shown in Figure 9.7 between t2 and t3. The data in the

buffer is later used to perform the following state transition, by t3, when a memory cycle becomes

available.

9.3.4 Processor Pipeline

The proposed microarchitecture is for an in-order, single issue embedded processor. The structure

of its 5-stage pipeline is shown in Figure 9.8. The pipeline is connected to a register file. There are

150

9.3. MICROARCHITECTURE OF AN IHGC SYSTEM

also connections via a bus to SRAMs implementing the directory and the main memory. Access to

the memory bus is shared with the IHGC’s state machine to allow the seamless interleaving of

collection operations and instruction execution.

A fetch stage loads instructions from memory and puts them into an instruction buffer. The

decode stage decodes the instructions in the buffer and drives the control signals and instruction

operands for the following pipeline stage. Up to four operands can be read from the register

file in one clock cycle. Address formation for memory access instructions occurs in execute #0:

the object’s base address is read from the directory and added to the pointer offset. Branches

along with arithmetic and logic operations are also performed during execute #0. Main memory is

accessed in the execute #1 stage.

The last stage of the pipeline has two components which operate in parallel as there are no

data dependencies between them. Register writeback writes the instruction’s results (if any) into

the register file. A maximum of two values can be simultaneously written into the register file.

The housekeep component is used to implement collection operations associated with memory

access instructions such as marking during loads. The operations at the housekeep stage are

outside the critical path of instruction execution to avoid stalling the pipeline. However, only

one instruction can be executing at the last pipeline stage at any time. It is not possible that, in

the same clock cycle, housekeep executes a memory access instruction while register writeback

commits the result of another instruction, like an add. Thus, housekeep and register writeback

are two components that comprise a single pipeline stage.

The remainder of this section explains in detail the most important aspects of the pipeline’s

microarchitecture.

9.3.4.1 Instruction Fetch

The pipeline’s fetch stage is responsible for loading instructions from main memory. The fetched

data is stored in an instruction buffer for later decoding. We assume that the main memory

supports 64-bit accesses, i.e. the data in and data out lines in Figure 9.6 are 64 bits wide.

Therefore, about four instructions are loaded per fetch as BeyondRISC instructions are mostly

encoded in 16 bits. This ensures that only a small portion of memory bandwidth is used for

instruction fetches and more memory cycles can be allocated to the IHGC.

Normally, a directory access is required when loading or storing into an object. This is because

the processor uses the object’s address in the directory to calculate the location to access in main

memory. But using the directory when fetching instructions has serious drawbacks. First, it

increases contention on the directory and potentially causes stalls as there would be yet another

component in the pipeline that competes for directory cycles. And second, instruction fetches

consume more memory cycles that would otherwise be used by the collector. To avoid these

problems, the fetch stage relies on cached directory metadata for the code object referenced by

the pc. As a result, the directory is not accessed when fetching instructions.

151

CHAPTER 9. MICROARCHITECTURE OF THE IHGC

A register in the pipeline caches two metadata items of the code object that are used in

the fetch stage. The object’s address is needed to calculate the address in main memory of the

instructions to fetch. Also, the size is required to check that data outside the code object’s bounds

is not accessed while fetching. Out-of-bounds errors are signaled to the decode stage and an

exception is raised when appropriate. The cached address and size metadata is overwritten by

logic in the execute #0 stage when a branch instruction is executed as explained in Section 9.3.4.2.

In addition, the IHGC state machine updates the cached address when the collector relocates the

object currently referenced by the pc.

9.3.4.2 Branches

Branch instructions write a new value into the pc so that execution continues at another address.

Branches force a flush to eliminate partially completed instructions in the pipeline that are not

in the new execution path, thus some work is lost. Modern designs mitigate this problem by

resolving branches as early as possible in the pipeline. In our microarchitecture, branches are

fetched and decoded as any other instruction. The branch destination address is fully resolved at

the execute #0 stage. As a result, only the work performed at the fetch and decode stages after the

branch was fetched is lost when the pipeline is flushed.

The BeyondRISC architecture supports two types of branch instructions. Relative branches

add or subtract an integer offset from the pc. In this case, it is guaranteed that the processor

continues to execute instructions from the same code object where the branch originated. So the

pipeline needs to be flushed, but the code object metadata cached for the fetch stage does not

need to be updated. In contrast, absolute branch instructions overwrite the pc with a pointer.

Therefore, the pipeline is flushed and the cached metadata for the fetch stage is updated with the

address and size of the code object at the branch destination. As stated before, both relative and

absolute branches are resolved at the execute #0 stage.

The BeyondRISC processor is aware of every allocated code object, its size and location in

memory. So it is possible to implement safety checks, and report errors via exceptions, while

executing branches at the execute #0 stage. For example, it is possible to detect when a program

is attempting to branch to an invalid destination, such as a NULL pointer, or outside the bounds of

a code object. These checks can be completed fully in parallel with program execution and do not

require additional instructions. Compared to other systems, the checks help detect and contain

errors as soon as they occur without incurring performance or code size overheads.

9.3.4.3 Memory Access Instructions

Memory access instructions are challenging to implement in a pipelined processor alongside

the IHGC. Operations, like loads and stores, require accessing the directory at least once and

sometimes more times. This causes contention and regular stalls if the pipeline is not structured

152

9.3. MICROARCHITECTURE OF AN IHGC SYSTEM

well. The design of our microarchitecture is motivated by the need to prevent these problems so

that memory access instructions are executed efficiently.

After fetching and decoding, the execution of memory access instructions is split into three

parts. First, the address to access in main memory is resolved during execute #0. For this

operation, the handle is extracted from the instruction’s pointer operand and used to read the

object’s address and size from the directory. The address and the pointer offset are added to

calculate the main memory address to access. Simultaneously, the object’s size is used to evaluate

whether the memory access is out-of-bounds; any errors detected give rise to an exception.

The second part in the execution of memory access instructions is performed in execute #1. The

address calculated during execute #0 is used to load or store data to main memory. Typically, the

main memory is a collection of large SRAMs, so the read and write delays are longer compared

to accessing the directory. Finally, the third part commits the memory access and performs

maintenance operations in the last pipeline stage. When storing, writeback is usually idle as the

registers do not have to be written. The housekeep stage sets the directory’s deep flag for the

accessed object if the word stored in execute #1 contains a pointer. In the case of loads, writeback

writes the data read from memory into the register file. If the loaded word is a pointer, then it

is processed for marking by housekeep. For both loads and stores, the operations performed at

writeback and housekeep do not have data dependencies and can be performed in parallel.

The pipelined implementation of loads and stores requires the directory to be split into two

SRAMs, as discussed in Section 9.3.2, to prevent stalls. In addition, both SRAMs must contain a

copy of the size component. This arrangement enables up to three memory access instructions to

be in-flight at different stages of execution in the pipeline. For example, a pointer loaded from

main memory can be processed for marking at housekeep while the address for a store is being

calculated in execute #0. Both operations require using the size component of the directory from

potentially different handles simultaneously. This is supported by our microarchitecture without

stalling the pipeline.

Stalls can still occur when executing a sequence of memory access instructions that load

pointers from memory. This is because processing each pointer for marking takes at most two

directory accesses at the housekeep stage. First, the pointer handle is used to load the mark

and deep flags along with the object’s size. Then the mark flag is set if the object is unmarked.

The directory read is performed in one cycle during housekeep, but the store must occur in the

following memory cycle. This means that any subsequent load instructions reading a pointer from

main memory will be stalled at execute #1 during that memory cycle. Fortunately, this situation

rarely occurs and the performance impact is negligible as discussed later in Chapter 10.4.4.

9.3.4.4 Memory Allocation

Allocating memory with the IHGC is simple since the free space is always clustered at one end of

memory. The following operations are performed in the processor’s pipeline after an allocation

153

CHAPTER 9. MICROARCHITECTURE OF THE IHGC

instruction (newm) is fetched and decoded. During the execute #0 stage, the IHGC’s free register

is inspected to ensure a handle is available. In parallel, the processor compares the requested

amount of storage space with the heappoint and the memory size to check whether there is

enough free space in main memory. If both checks succeed, the handle at the head of the free

list is popped. Otherwise, the pipeline is stalled until the IHGC reclaims enough memory and

handles to fulfil the allocation.

The execute #1 stage updates the new object’s address and size components in the directory

after a handle is successfully allocated. The address is set to the first memory location that was

previously free, i.e the heappoint, and the size is updated with the requested amount of storage

space in bytes. Simultaneously, the object’s header is written to main memory and the old value

of the heappoint is incremented to reference one byte after the end of the newly allocated object.

There are no data dependencies between the operations performed at execute #1, so the hardware

can easily complete them in parallel in a single pipeline stage. The execution of an allocation

instruction concludes by writing a pointer to the newly allocated object into the register file

during the writeback stage. Also, the housekeep stage processes that pointer for marking, as

described in Section 9.3.4.3, and unconditionally writes the new object’s size into the SRAM

containing the directory’s mark, list, deep and size components.

A pipeline hazard occurs when an allocation instruction is immediately followed by a memory

access instruction. The newly allocated object’s address and size are written to the directory

during execute #1. At this time, the address for the subsequent memory access instruction is

computed in execute #0. This requires reading an object’s address from the directory. But the

SRAM containing the directory’s address and size components has a single read-write port that

must be shared between the execute #0 and execute #1 stages. Therefore, the memory access must

stall at execute #0 until the allocation instruction reaches the writeback stage.

9.3.5 Interleaving

The IHGC operates in the background independently from the processor’s pipeline. Both share

access to the main memory and directory to perform their work. Collection operations are

interleaved with memory accesses from the processor such that the IHGC never pauses the user’s

program. We can implement this technique using either of two approaches.

1. Access to main memory and the directory is exclusive to one driver. The IHGC cannot use

the directory during the same memory cycle that the pipeline is accessing main memory.

Similarly, the IHGC cannot use the main memory during the same memory cycle that the

pipeline is accessing the directory. We implemented this approach in our evaluation model

from Chapter 7. Enforcing exclusive access to the memory facilitates resolving coordination

issues between the processor and collector. For example, accesses to objects being compacted

are easily dealt with because the collector is paused while memory instructions are executed.

Therefore, the interaction between the pipeline and the collector is greatly simplified at

154

9.4. HARDWARE COSTS

the expense of wasting memory cycles when the pipeline only requires access to one of the

memories.

2. The IHGC can access the main memory or the directory as long as the processor’s pipeline

does not require using that resource. For instance, the IHGC can perform a state transition

that only requires accessing the directory while the pipeline is using the main memory. In

this case, the IHGC operates in parallel with the processor as collection work progresses

simultaneously with the execution of memory access instructions in the pipeline. This

maximizes the use of the spare memory bandwidth and increases collection throughput,

thus pause times are reduced. However, the design becomes more complex as it is difficult

to coordinate the IHGC’s operation with the processor.

We use option 1 from the list above in our proposed microarchitecture to simplify our design

at the expense of reduced collection throughput. In this approach, access to both the directory and

main memory is granted exclusively to either the processor or the IHGC. The rules for allocating

a memory cycle are as follows.

• Housekeep has the highest priority to access the directory’s mark, list, size and deep

components.

• Execute #1 has the highest priority to access the main memory and the directory’s address

and size components.

• Execute #0 accesses the directory when Execute #1 is not using it.

• An instruction fetch is performed when there is space in the instruction buffer and the

main memory is not used by execute #1.

• The IHGC state machine performs a transition when the directory and the main memory

are not in use by the processor pipeline.

9.4 Hardware Costs

In this section, we provide a rough estimate of the hardware cost to implement the IHGC state

machine, the main memory and the directory. We put our estimates into perspective by comparing

them with the hardware requirements of other components.

9.4.1 IHGC State Machine

We developed a Register-Transfer Level (RTL) implementation of the IHGC state machine in

Verilog.1 The design was then synthesized using the Yosys Open Synthesis Suite [190] and a
1The implementation was developed in cooperation with Ed Nutting from the University of Bristol’s Trustworthy

Systems Laboratory.

155

CHAPTER 9. MICROARCHITECTURE OF THE IHGC

Figure 9.9: Synthesis hardware costs of the IHGC state machine and other open-source designs.

45 nm standard cell library. Synthesis transforms high-level RTL into an implementation that

consists of basic hardware cells, like logic gates and multiplexers. We use the cell count as an

estimate of the IHGC state machine’s hardware cost. However, this is only an approximation as

synthesis is the first step to tape-out a hardware design. Further processes, such as placement

and routing, must also be performed to provide more accurate hardware cost estimates.

The synthesized IHGC state machine consists of 3284 cells out of which about 15% are D-Type

flip-flops. Figure 9.9 compares the IHGC state machine’s hardware cost with the synthesis results

of the open-source designs listed in Table 9.2. The IHGC state machine is about three times larger

than the division module. However, the logic required to implement our design is only a small

fraction of the hardware used by the other modules. PicoRV32, a CPU core optimized for size, is

about 3 times larger than the IHGC state machine while a more complex design, like JPEG, is

over 20 times larger. Surprisingly, DMA is approximately 5 times larger than the IHGC even

though both modules can be considered as memory controllers. This is because DMA implements

a complex memory controller with up to 31 channels and is able to operate on complex data

structures like linked lists and circular buffers. DMA also includes a scheduler to time-slice

access to the memory interface across all channels according to configurable priorities.

We estimate that the IHGC state machine would increase the logic requirements of a small

processor, like PicoRV32, by a factor of 1.3. But logic is only about half (or less) of the total chip

area as modern processors have generous amounts of on-chip memory. Therefore, the overall

hardware cost of the IHGC is almost negligible for a modern chip.

9.4.2 Main Memory

We quantify the hardware costs of adding a 1-bit type tag to every word in an SRAM. Unfortu-

nately, OpenRAM currently does not support generating memories larger than 2048 words deep,

156

9.4. HARDWARE COSTS

Design Description Reference

division Integer division module extracted from the PicoRV32 project. Its
inputs are 32-bit integers, but the design processes one bit per clock
cycle only.

[189]

PicoRV32 Small processor core that implements the RV32IMC instruction set.
The design is not pipelined and only includes a basic interrupt and
exception handling mechanism.

[189]

DMA Direct Memory Access (DMA) IP core that performs transfers be-
tween two WISHBONE interfaces.

[182]

AES-128 Implementation of the AES-128 cipher. [181]
JPEG JPEG encoder from the Video Compression Systems Project. [183]

Table 9.2: Synthesized open-source designs compared in Figure 9.9.

Capacity (KB) Area (mm2)

64 0.212
128 0.425
256 0.849
512 1.699
1024 3.397

Table 9.3: SRAM area for selected capacities. The figures are calculated using the cell area factor
and array efficiency from the ITRS 2009 report [152]. The area of the 6T SRAM bit-cell is given by
the area factor multiplied by the square of the minimum feature size (F2); it is 140× (45 nm)2 for
the 45 nm process node. The array efficiency is the portion of the memory block that is occupied
by the SRAM bit-cells as opposed to the port logic or other circuitry. The array efficiency is 70%
for the 45 nm process node.

which is too small for modern embedded systems, so we estimated the overheads of type tags

using figures from the ITRS 2009 reports instead.

The ITRS provides an area factor to measure the area of a 6T SRAM bit-cell as a function of

the square of a process node’s minimum feature size (F2). The area factor for the 45 nm process

is 140, so the area of an SRAM bit-cell is about 140× (45 nm)2. In addition, the ITRS reports the

array efficiency, that is, the portion of the SRAM that is occupied by bit-cells as opposed to the

port logic and other circuitry. The array efficiency in the 45 nm process node is 70%. Using the

area factor and array efficiency, we estimate that the memory overheads due to the IHGC’s 1-bit

type tags is approximately 3.1%.

9.4.3 Directory

We estimate the memory overhead of the directory using the main memory SRAM (without the

tag bits) as a baseline. The comparison is fully based on figures from the ITRS 2009 reports for

157

CHAPTER 9. MICROARCHITECTURE OF THE IHGC

Figure 9.10: Area overhead of the directory when using the main memory as a baseline. The
figures are calculated using data from the ITRS 2009 report for the 45 nm process node [152].

the 45 nm process node. The estimated areas for selected sizes of the baseline memory are shown

in Table 9.3.

The area of the IHGC’s directory depends on the following parameters.

Main Memory Size: The directory component storing the object’s base address requires more

bits as the depth of the main memory increases.

Maximum Object Size: The directory component storing the object’s size requires more bits

when the maximum amount of memory that it is possible to allocate for a single object

increases. The maximum object size cannot be larger that the bytes addressable using a

pointer offset.

Number of Directory Records: Each allocated object has a unique handle and an associated

record in the directory. Therefore, the maximum number of live objects must match the

number of records, i.e. the depth, in the directory. Also, the directory’s list component must

have sufficient bits to represent every handle. The maximum number of live handles is

configured by the hardware designer and is limited by the number of bits in a pointer

handle.

The information in the list above and Table 9.3 was used to calculate the directory’s area

overhead shown in Figure 9.10 for multiple memory configurations. The directory overhead

increases dramatically as the number of records grows in comparison to the main memory size.

However, several of these configurations are impractical. For example, a system with only 64 KB

of main memory would not be paired with an 8192-record directory. If the entire memory were

158

9.5. CLOCK SPEED

Wire Type Wire Pitch (nm) RC Delay (ps/mm)

Metal 1 90 2,100
Intermediate 90 1,892

Global 135 542

Table 9.4: Interconnect features for the 45 nm process nodes. The information is extracted from
the ITRS 2007 report [153].

allocated, each object would have an 8 byte average size, which does not happen in practice, so

the directory is disproportionately large. Similarly, a 1024-record directory is too small for a

1024 KB memory. Researchers estimated that the average object size in a modern programming

languages is 22-36 bytes [30, 184], so in general, we expect the directory area overhead to be

10-20% of the main memory to provide a reasonable number of records although this is highly

dependent on system requirements.

9.5 Clock Speed

A design’s clock speed is limited by the time it takes for a signal to propagate through the longest

path between two sequential components. We found this critical path in our design using a Verilog

RTL model of the IHGC alongside a BeyondRISC processor. Our experiments indicate that the

critical path occurs when calculating an address to access memory. This operation involves using

the pointer handle as an index into the directory to load the object’s base address in main memory,

after which the base address is added to the pointer offset. Therefore, the delay through the

critical path is given by the directory’s read delay, the propagation delay through the interconnect

and the duration of an add. We estimate each of these individually.

Directory: The read delay of an SRAM depends on the memory architecture, its capacity and

the process node. The ITRS reports state that the delay of a read access is approximately

0.2-1.2 ns for the 45 nm process node [155]. We assume a pessimistic 1.2 ns read and write

delay.

Interconnect: The interconnect refers to the wires carrying the signals between the various

hardware components on a chip. Modern microprocessors use several metal layers with

wires of different pitches to mitigate interconnection delays. Metal 1, the lowest metal layer,

contains the thinnest wires with the least pitch and the largest interconnect delays. These

wires are normally used for short, local connections such as between gates. Intermediate

and Global metal layers are higher in the stack and are normally used to connect larger

components across greater distances. The interconnect delays for the 45 nm process are

shown in Table 9.4. We assume that the components involved in generating an address,

our design’s critical path, are connected using wires in the intermediate metal layers. We

159

CHAPTER 9. MICROARCHITECTURE OF THE IHGC

Figure 9.11: Propagation delays for various 16-bit and 32-bit adder designs in the 45 nm process
node. The figures are obtained from the literature [90, 119, 120, 173].

also assume that the interconnect length is 0.5 mm, so its delay is about 946 ps. This is a

conservative assumption as the total area of most embedded processors is often smaller

than 0.5 mm2.

Add: The delay of an adder is proportional to the number of bits in the result. For example, a

16-bit adder is expected to have a shorter delay than a 32-bit adder. Also, the algorithm that

the adder implements greatly influences the adder’s features. High-performance adders are

optimized to reduce delays, but they have high power and area requirements. In contrast,

adders optimized for low-power operation are implemented using much less hardware

although they are slower. The delays of various 16-bit and 32-bit adder designs using the

45 nm process node are shown in Figure 9.11. A memory access with the IHGC typically

involves performing an addition that does not exceed 20 bits, so we assume a conservative

700 ps delay.

We estimate the critical path in our design to be 2.84 ns. So the clock speed of our embedded

processor with the IHGC is approximately 350 MHz when using the 45 nm process. As will be

discussed in Section 9.6, this clock speed is within the range of frequencies commonly targeted for

embedded processors. Further increasing the clock speed is possible, but this requires introducing

significant changes to our proposed microarchitecture.

9.6 Discussion

In this section, we discuss the clock speed and hardware requirements of our proposed microar-

chitecture. Our aim is to understand how the results fit within the context of embedded systems

160

9.6. DISCUSSION

and garbage collection.

9.6.1 Clock Speed

Most embedded systems run at clock speeds between a few KHz and 600 MHz as their designs

attempt to strike an acceptable tradeoff between run-time performance and power consumption.

For example, STMicroelectronics, one of the leading electronics and semiconductor manufacturers,

produces a wide range of 32-bit embedded devices based on ARM Cortex-M processors with clock

speeds of up to 550 MHz [171]. So we conclude that our IHGC design alongside a BeyondRISC

processor operating at up to 350 MHz is acceptably placed towards the higher-end of the range of

clock speeds for embedded systems.

9.6.2 Memory Overheads

The IHGC’s area overhead due to the directory and tag bits is reasonably small considering that

on-chip memory usually occupies about half the chip’s area. The remaining area is used for the

processor’s logic. So compared to a processor without the IHGC, our system only contributes to

a total 6-12% area increase due to the directory and tag bits. We also expect this overhead to

decrease if the chip contains caches, like the ARM Cortex-M7. Compared to software garbage

collectors, we consider that this is an acceptable cost in exchange for the benefits of hardware

garbage collection as discussed in Section 7.4.4.

9.6.3 Scaling Up

The proposed IHGC microarchitecture currently targets embedded processors with relatively

short pipelines and flat, on-chip memory hierarchies. This simplified our design while allowing

us to deliver the benefits of garbage collection with good performance. But how can we integrate

our hardware collector into larger computer systems? This requires cross-cutting changes to our

microarchitecture and the collector. We briefly discuss two considerations to scale up the IHGC.

Clock Speed: The clock speed in our microarchitecture is limited by the critical path to generate

addresses while executing memory access instructions. An alternative to increase the clock

speed is to add pipeline stages to break up the critical path into shorter, simpler operations.

For example, the address calculation at the execute #0 stage could be split into two parts:

the first loads the object’s base address from the directory while the second stage adds it to

the pointer offset. However, increasing the pipeline length makes the design more complex.

Real-time Requirements: The IHGC’s specification is designed to guarantee that the timing

properties of the system can be statically analyzed. However, larger systems are typically

soft real-time, so there is scope to modify parts of the collection algorithm to increase

performance or decrease hardware costs at the expense of the IHGC’s hard real-time

161

CHAPTER 9. MICROARCHITECTURE OF THE IHGC

properties. For example, the IHGC’s mark on load can be changed to a mark on store

(conceptually similar to Brooks’ write insertion barrier). This would simplify the pipeline’s

interaction with the directory and eliminate the need for the housekeep stage because we

no longer need to wait for pointers to be loaded from memory before they are processed

for marking. But Brooks’ write barrier also requires a complex termination condition that

degrades the collector’s timing properties as discussed in Section 3.2.2.

9.7 Summary

We described the microarchitecture of the IHGC alongside a pipelined processor. The most impor-

tant design decisions were highlighted including the pipeline structure and memory organization.

Based on this information, we estimated the IHGC’s tag bits to increase the main memory area

by about 3% in the 45 nm process node. The directory incurs an extra 10-20% area overhead

when using the main memory as a baseline although this depends on the system’s configuration.

Also, the IHGC’s state machine incurs almost negligible logic area overheads for a modern chip.

Finally, we estimate the processor to be clocked up to 350 MHz.

162

C
H

A
P

T
E

R

10
EVALUATION OF THE IHGC MICROARCHITECTURE

In this chapter, we evaluate the performance of the hypothetical system proposed in Chapter 9. A

timing-accurate simulator of the IHGC alongside the pipelined BeyondRISC processor is used for

the experiments presented. We evaluate our design from three angles: memory requirements,

pipeline stalls and garbage collection pauses. We also consider simple hardware optimizations to

increase the IHGC’s performance.

10.1 Evaluation Platform

We implemented a timing-accurate model in SystemC of the processor microarchitecture described

in Chapter 9. SystemC is a C++ class library applied in industry to architectural exploration

and performance modeling as in this thesis [24]. The library provides an event-driven simulation

environment that deliberately resembles hardware description languages, like Verilog and VHDL,

while allowing access to most facilities in the C++ programming language. Therefore, SystemC is

an ideal technology to implement a realistic simulation model of the IHGC alongside a pipelined

BeyondRISC processor.

SystemC enables several coding styles and abstractions to develop performance models. For

example, the Transaction-Level Modeling (TLM) interfaces are an abstraction to separate the

implementation details of modules from how they communicate. In TLM, the focus is on the

details of the transaction rather than the modules communicating. For the IHGC’s performance

model, we are interested in the implementation details of our microarchitecture, so we adopt a

coding style closer to RTL. However, we simplify our simulator in two ways. First, we model the

interconnections between large modules, such as the IHGC and the pipeline, using hierarchical

channels. Second, our model does not describe the implementation details of components unre-

163

CHAPTER 10. EVALUATION OF THE IHGC MICROARCHITECTURE

lated to the IHGC, such as the Arithmetic and Logic Unit (ALU). These simplifications mitigate

the model’s complexity and reduce development time.

Our SystemC performance model implements the IHGC and processor under the following

assumptions.

• The main memory has one read-write port and a main memory access can be completed in

one clock cycle.

• A directory access and an add can be completed in one clock cycle. This ensures that address

generation can be performed in a single pipeline stage when executing memory access

instructions.

• The directory is implemented using two physically separate memories each with a read-

write port. The directory memories can be operated independently.

• The timing of arithmetic and other non-memory access instructions remains as stated in

the ARM Cortex-M0 Technical Reference Manual [19]

10.2 Benchmarks

We use a subset of the benchmarks from Chapter 7 to evaluate our system. The programs were

ported to the BeyondRISC architecture as described in Section 8.3. They are split into four groups

depending on their origin.

1. A collection of small C programs from the BEEBS benchmark suite [130].

2. Two C programs, anagram and audiobeam, from the TACLe benchmark suite [62].

3. A C program, egui, that benchmarks the construction of embedded graphical user interfaces,

such as those found in printers and home appliances. We developed this software using the

open-source library LittlevGL [95].

4. Ten scripts from the Python Benchmark Suite [66] executing on the MicroPython inter-

preter [115]. The version of the interpreter used for the experiments discussed in this

chapter is the same as the program ported in Section 8.3.4. In comparison to the MicroPy-

thon interpreter used in Chapter 7, this version is simpler as it does not compile Python

scripts at run-time; the scripts are pre-compiled to bytecode and loaded at boot-time.

10.3 Compiler and Toolchain

All benchmarks were compiled with a modified version of LLVM 9 that includes our custom

backend for the BeyondRISC architecture [102]. This compiler incorporates the techniques

164

10.4. RESULTS

discussed in Chapter 8 to eliminate the drawbacks of the off-the-shelf LLVM that we used for

our experiments in Chapter 7. Namely, our LLVM backend correctly handles function call stacks,

emits instructions that do not violate type constraints and does not insert pointers into code

objects. We also apply the generic code optimizations implemented by LLVM. Specifically, we set

the -O2 flag, disable stack protection checks and emit position-independent code only. As a result,

our system runs realistic code emitted by a production-quality compiler while benefiting from the

increased security and performance provided by the IHGC.

Each program is compiled from C to assembly language using LLVM. For simplicity, we did

not implement the assembler and linker in LLVM. Instead, we developed a custom Python tool

that compiles to object code and links the assembly files generated with LLVM. Our Python

tool uses the linking strategy outlined in Section 8.2.6 to ensure that the IHGC can check the

bounds of global objects and variables at run-time. However, the Python tool does not implement

link-time optimizations that are common in production-quality linkers. For example, the GNU

Compiler Collection’s (GCC) linker performs dead code elimination optimizations to reduce the

size of the program binary. These issues are not limitations of the IHGC and can be easily

addressed by enhancing our Python linker.

10.4 Results

In this section, we present and discuss our experimental results. Our aim is to quantify the

run-time performance and memory usage of the IHGC and compare it with the earlier results

from Chapter 7 where appropriate. We also measure empirically any pauses introduced by the

collector and the performance implications of various optimization techniques that can be easily

integrated with the IHGC microarchitecture that our SystemC model implements.

10.4.1 Memory Requirements

Our BeyondRISC system uses an exact collector and an unconventional linking strategy for

embedded devices. Therefore, we expect the memory requirements of this system to change in

comparison to the results for the ARM-based processor described in Chapter 7. In this section,

we measure the differences between these two systems with regards to memory requirements for

statically allocated global variables and the heap.

10.4.1.1 Global Variables

Statically allocated global variables are those whose memory is reserved at compile-time. A

toolchain, like GCC, for a conventional architecture, like ARMv6-M, typically allocates space

for these variables in the bss, data or rodata sections of the program’s binary. As explained in

Section 8.2.6, each section is allocated as a contiguous chunk of memory that can be arbitrarily

indexed by the program. Our linker for BeyondRISC does not have the concept of program

165

CHAPTER 10. EVALUATION OF THE IHGC MICROARCHITECTURE

Figure 10.1: Memory size of global variables in our benchmarks. This corresponds to the ag-
gregated size of the bss, data and rodata sections of a program compiled for a conventional
architecture such as the ARMv6-M.

sections. Instead, global variables are allocated as independent objects accessible through an

array of pointers. This arrangement leverages the benefits of the IHGC in that memory accesses

to global variables are checked.

The memory requirements for global variables change considerably depending on the linking

strategy. Figure 10.1 shows the space required for statically allocated globals with BeyondRISC

and ARMv6-M. We can split the results into three groups. The first group consists of the bench-

marks that have few global variables, like bubblesort or fac, so their memory requirements are

very similar. The majority of these benchmarks are small programs where the linking strategy

has very little impact on the final binary. The second group consists of benchmarks, such as

arrayheapsort and dijkstra, in which ARM has slightly higher memory requirements compared

to BeyondRISC. The difference, usually between 1-2 KB, occurs because these programs rely on

malloc to dynamically allocate memory at run-time. The measurements shown in Figure 10.1

are taken from programs compiled for the ARMv6-M architecture without the IHGC. Therefore,

the linked binary for ARM includes the code from dlmalloc, an explicit memory manager popular

in embedded systems, that needs 1-2 KB of space for global variables. The implementation of

malloc in BeyondRISC does not use any global variables, so the memory requirements are lower.

The last group of benchmarks includes anagram and egui where the memory requirements

in BeyondRISC are significantly larger than in ARM. This discrepancy occurs due to memory

overheads for headers and references to global objects incurred in the BeyondRISC linking

strategy. For example, anagram relies on a dictionary of approximately 2600 strings that are

statically allocated at run-time. The strings are usually very small, between 1-6 bytes, but each is

allocated in a separate global object that is referenced from an array representing the dictionary.

166

10.4. RESULTS

Figure 10.2: Minimum heap size requirements of the MicroPython benchmarks. The second and
third bars correspond to the results shown in Figure 7.3 and discussed in Section 7.4.2.2. The
’Software Collector’ bar refers to the mark-sweep garbage collector packaged with the off-the-shelf
MicroPython interpreter running on the simulated ARM system described in Chapter 7.

So compared to ARM, the BeyondRISC program requires over 20 KB more of space for globals as

each string incurs two words of overhead: one for the header and another for the array reference.

A similar problem occurs in egui although this program allocates fewer global objects of larger

size, so the overheads are limited to about 4 KB only.

In summary, the linking strategy that we implemented for BeyondRISC takes advantage

of the security benefits of the IHGC. But it incurs memory overheads for statically allocated

variables at compile-time. These overheads are generally modest, but they increase significantly

when the program uses many small global objects. If required, the overheads can be mitigated by

using a traditional linking strategy, similar to that implemented for an ARMv6-M system, at the

expense of less effective run-time checks when accessing global variables.

10.4.1.2 Heap

Accurately measuring the heap memory requirements was a recurrent problem in Chapter 7. This

is because the version of the compiler used for those experiments did not distinguish between

value and pointer types. As a workaround, we relaxed the constraints on pointer operations,

but in this case the IHGC was no longer exact. Also, the function call stack was allocated as a

contiguous chunk of memory. These design choices occasionally caused the IHGC to retain dead

objects for longer than expected, so the memory requirements of our benchmarks were often

disproportionate. For example, the hexion and json_dumps benchmarks have substantially higher

heap memory requirements with the ARM processor alongside the IHGC compared to the same

processor running the MicroPython software collector as shown in Figure 10.2.

The BeyondRISC system used for the experiments in this chapter fully addresses the problems

outlined above. Features in the instruction set, such as using linked instead of contiguous stacks,

167

CHAPTER 10. EVALUATION OF THE IHGC MICROARCHITECTURE

alongside our modified LLVM compiler ensure that the IHGC is once again exact and promptly

reclaims garbage objects. As a result, Figure 10.2 shows a significant decrease in heap memory

requirements for most of our MicroPython benchmarks in BeyondRISC compared to an ARM

processor with either the IHGC or the software collector. json_dumps is the only program that

shows a higher heap memory requirement in BeyondRISC than in MicroPython’s software

collector. This occurs because over 55% of the objects allocated by json_dumps are very small

(often 4-20 bytes in size). Each object requires a header word, so the IHGC incurs higher memory

overheads for this program in comparison to the software collector. However, the allocation

patterns of json_dumps are unusual as the average object size in a modern programming language

is 22-36 bytes [30, 184], so this overhead is not generally a concern in practice.

10.4.2 Characterizing Memory Cycles

As discussed in Section 7.4.1, the proportion of memory cycles available to the IHGC is important

to ensure optimal performance. In our system, there are two main operations that take memory

cycles away from the IHGC: memory access instructions and instruction fetches. Figure 10.3

shows that up to 70% of memory cycles are used to execute memory access instructions, such

as loads and stores. However, the proportion of memory cycles for instruction execution varies

substantially depending on the benchmark. For example, crc uses less than 40% of memory cycles

for instruction execution while about 70% are used in ud for the same purpose. More importantly,

the larger programs, like anagram, egui and the MicroPython scripts, consume about 45-60% of

memory cycles for instruction execution.

Instruction fetching consumes a considerable portion of the available memory cycles although

this depends on the hardware and architecture. For example, we expect that the processor utilizes

approximately 25% of the memory cycles for fetching if the data bus to the memory is 8 bytes

wide, i.e. 64 bits, and each instruction is encoded in 16 bits as in BeyondRISC. In general, our

experiments indicate that only 10-20% of memory cycles are used exclusively to fetch instructions

as shown in Figure 10.3. This value is less than the expected 25% because the processor is

pipelined, so fetches are often performed while other memory access instructions are executing as

explained in Section 7.4.1. The IHGC could not have used the memory cycle regardless of these

fetches, so they do not decrease the number of memory cycles available to the collector.

Naturally, increasing the amount of data loaded per fetch decreases the memory cycles

dedicated to instruction fetching. For example, loading 16 bytes instead of 8 decreases the

memory cycles for fetching by 10% for crc. However, further increasing the amount of loaded

data does not have a substantial impact in the distribution of memory cycles. This is because

branch instructions are likely executed before the data from the previous fetch is exhausted.

Unfortunately, branches force the processor to fetch again, so memory cycles are taken away

from the collector. Another consequence of increasing the amount of data loaded per fetch is

that the IHGC completes mark-compact cycles faster. For instance, deltablue performs 15% more

168

10.4. RESULTS

(a) TACLe, BEEBS and egui.

(b) MicroPython.

Figure 10.3: Distribution of memory cycles in the BeyondRISC system as the amount of data
loaded per instruction fetch increases. The data width is the size of the hardware memory bus
and in these experiments corresponds to the number of bytes loaded per fetch operation. The
program binary is exactly the same for all experiments as the software does not take advantage
of the larger data widths to optimize performance; memory accesses for instruction execution are
limited to 4 bytes.

collection cycles in approximately the same interval of time when the processor fetches 16 instead

of 8 bytes. But performing collection cycles faster also increases the likelihood that the processor’s

pipeline needs to mark pointers loaded from memory. Therefore, the proportion of memory cycles

used for instruction execution increases slightly when more data is loaded per fetch.

Comparing the results from Figure 7.1 and Figure 10.3, we observe that the IHGC has fewer

memory cycles to operate when used alongside the BeyondRISC processor instead of the ARM

Cortex-M0. This occurs because the BeyondRISC processor has a pipeline that is two stages

longer than that of the ARM Cortex-M0. Multiple instructions can be in-flight in the longer

pipeline at various stages of execution, so it is not guaranteed that the IHGC performs a state

169

CHAPTER 10. EVALUATION OF THE IHGC MICROARCHITECTURE

Fetch Decode Execute #0 Execute #1 Housekeep/
Writeback

Clock
Cycle

STORE ADD LOAD

STORE ADD LOAD

STORE ADD LOAD

STORE ADD

t0

t1

t2

t3

Figure 10.4: The IHGC is not guaranteed to operate when the BeyondRISC pipeline executes
non-memory access instructions, like an add. The dashed boxes represent instructions requiring
access to the directory or main memory when executing at that pipeline stage.

transition when a non-memory access instruction is executed. For example, Figure 10.4 shows

that the IHGC cannot operate at cycle t1 even though an add instruction is executing in the

BeyondRISC pipeline because there is a load in the execute #0 stage. Similarly, a store starts

executing in the following cycle t2 when the add is at execute #1, so the IHGC cannot operate at

this time either. This situation does not occur in the ARM-Cortex-M0 as only one instruction

can be at the execution stage during each memory cycle, thus it is guaranteed that the IHGC

performs a state transition when a non-memory access instruction, like an add, is executing

as long as an instruction fetch is not required. As a result, more memory cycles are used for

instruction execution, and consequently less cycles are available to the IHGC, in the BeyondRISC

processor compared to the ARM Cortex-M0.

In summary, the IHGC has about 20-25% of memory cycles to operate when 8 bytes are

loaded per fetch, but this can change significantly depending on the workload. Additionally, the

proportion of memory cycles available to the collector increases when more data is loaded per

fetch. However, fetching more than 16 bytes simultaneously does not provide sufficient benefits

to justify the added hardware expense of a wider memory bus. Finally, the proportion of memory

cycles available to the IHGC decreases as the length of the pipeline increases.

10.4.3 Pauses

The IHGC pauses the user’s program when memory is allocated faster than it can be reclaimed.

Eventually, the system will reach an out-of-memory condition because there is simply not enough

free space or handles to satisfy an allocation. So the program is paused until the IHGC reclaims

enough memory to meet the immediate allocation demands. In this section, we investigate how

our design decisions affect pauses for benchmarks run on the BeyondRISC processor.

170

10.4. RESULTS

(a) TACLe, BEEBS and egui.

(b) MicroPython.

Figure 10.5: Proportion of clock cycles that the garbage collector pauses the user’s program. For
each benchmark, samples were taken for selected heap and stacklet sizes. A 0 words stacklet size
corresponds to using linked stacks.

10.4.3.1 Linked Stacks

We first consider a BeyondRISC system using linked stacks as described in Section 8.2.3.2.

Figure 10.5 shows the proportion of time that programs are paused due to collection operations

as the heap size increases. Clearly, the system incurs high overheads when the heap size is set to

the minimum amount of memory required for the program to operate correctly, i.e ×1.0 in the

plot. This is because there is not sufficient excess memory to serve incoming allocation requests

while the IHGC reclaims garbage objects. Increasing the heap size dramatically decreases pause

times as we also discussed in Section 7.4.3. For example, the pauses for deltablue decrease from

80% to 35% when the heap size is increased by a factor of 1.5, although subsequent increases in

memory size reduce pauses by a further 15% only.

Comparing the results in Figure 10.5 with our earlier data in Section 7.4.3, it is apparent

171

CHAPTER 10. EVALUATION OF THE IHGC MICROARCHITECTURE

(a) Amount of memory allocated.

(b) Proportion of allocated memory for stack frames.

Figure 10.6: Memory allocations by object type in the TACLe, BEEBS and egui benchmarks
as the stacklet size changes. A 0 words stacklet size corresponds to using linked stacks. The
processor’s data width is 8 bytes in all cases.

that the proportion of pauses in the BeyondRISC system is significantly higher than in the ARM

system with the IHGC. Also, the BeyondRISC system requires a greater amount of heap memory

to decrease pause times. For instance, increasing the heap by a factor of 4.0 in the BeyondRISC

system running MicroPython reduces pauses to about 20% in the best case while a heap size

increase by a factor of 1.5 only mostly eliminates pauses in the ARM system. The cause of this

discrepancy becomes clear when we consider our benchmark’s allocation patterns. Figure 10.6

and Figure 10.7 show that the vast majority of objects allocated by the programs suffering pauses

correspond to stack frames. In fact, stack frames account for over 90% of all allocations in 12 of

our benchmarks and the aggregated size of stack frame objects is 2-400 times larger than the

heap space allocated for any other purpose.

172

10.4. RESULTS

(a) Amount of memory allocated.

(b) Proportion of allocated memory for stack frames.

Figure 10.7: Memory allocations by object type in the MicroPython benchmarks as the stacklet
size changes. A 0 words stacklet size corresponds to using linked stacks. The processor’s data
width is 8 bytes in all cases

We can conclude that the excessive amount of memory allocated for stack frame objects when

using linked stacks is causing the pauses as the IHGC is not sufficiently fast to reclaim the

garbage, even when the heap size is increased fourfold.

10.4.3.2 Stacklets

The clear drawback of using a linked stack is that some programming patterns trigger high

volumes of allocations that cause collection pauses. Stacklets are an alternative stack organization

that addresses this problem. Each stacklet is a contiguous block of memory that can accommodate

several stack frames as explained in Section 8.2.3.3. Upon entering a function, the callee places

its stack frame on the current top stacklet if there is sufficient space; otherwise, the stack frame

173

CHAPTER 10. EVALUATION OF THE IHGC MICROARCHITECTURE

is placed in a new, dynamically allocated stacklet.

Introducing stacklet support in BeyondRISC is relatively simple thanks to the IHGC. We add

a newstk instruction that replaces newm when the program requests a new stack frame. newstk

takes two input operands: a pointer to the current top stacklet, i.e. the sp register, and an integer

indicating the required size (in words) of the new stack frame. Its output is a pointer to the

beginning of the new stack frame. newstk uses the sp handle to load the size of the top stacklet

from the directory. This is used, along with the sp offset and the requested stack frame’s size, to

determine whether there is sufficient space in the current top stacklet to accommodate the new

stack frame. If so, a new pointer is constructed by decrementing the sp offset, otherwise a new

stacklet is dynamically allocated. The size of stacklets is chosen by a configurable parameter that

we set at boot-time, but larger stacklets are allocated when the program requests a stack frame

larger than the configured size. Therefore, configuring the stacklet size to 0 words is equivalent

to using a linked stack.

Stacklets have the potential to dramatically reduce collection pauses as shown in Figure 10.5.

For example, pauses are reduced by 30% for json_loads when the heap size is 1.5 larger than the

minimum required to run the program and the stacklet size is 128 words. This is because stack

frame allocations were reduced by about 20% as shown in Figure 10.7. However, choosing the

appropriate stacklet size for a program is difficult. An incorrect parameter often results in worse

pause times as occurred in egui when the stacklets are 128 and 512 words in size. Two situations

can cause this undesirable effect. First, larger stacklets are detrimental when the original cause

of the pauses was object allocations unrelated to stack frames. For instance, most heap allocations

in levenshtein and dijkstra do not correspond to stack frame objects, so increasing the stacklet

size also increases pauses because the IHGC will take longer to mark and compact the stack. In

this case, the proportion of memory allocated for stack frames changes little when the stacklet

size increases, so larger stacklets are unnecessary and in this case counterproductive.

The second situation where larger stacklets introduce longer pauses occurs in egui and

fannkuch as shown in Figure 10.5. The problem here is that collection work increases substantially

when the stack size does not align well to a multiple of the stacklet size. For example, consider a

program that calls a function A which uses a one word stack frame. Then A calls another function

B that requires a 128 word stack frame and recursively calls A. If the stacklet size is 128 words,

then each call to A will consume a full stacklet even though only one word is actually in use. In

addition to the considerable space wasted, the IHGC has to mark and compact almost twice the

number of words for those stacklets compared to using linked stacks. Therefore, collection cycles

take longer and pauses increase accordingly.

Clearly, the best results in terms of pauses are observed in Figure 10.5 when the stacklet size

is set to 1024 words. This is because in almost all benchmarks a single stacklet has sufficient

space to accommodate the program’s maximum stack size. In other words, the stacklet size is

sufficiently large that the system effectively ended up using a contiguous stack. As explained

174

10.4. RESULTS

before, the benefit is that allocations in connection to stack frames are minimized, but the IHGC

is no longer able to properly check access bounds when accessing memory in the stack. Also, the

contents of stale stack frames below the sp are not zeroed, so there could be a delay in reclaiming

garbage objects that increases the system’s heap memory requirements.

In summary, an alternative stack arrangement like stacklets can be used to significantly

reduce collection pauses at the expense of reduced bounds checking capabilities and the risk of

higher memory requirements. Stacklets are straight-forward to implement alongside the IHGC

by leveraging the object size information from the directory. However, choosing the appropriate

stacklet size for a program is challenging; the wrong parameter can have detrimental effects on

pause times.

10.4.3.3 Data Width

In this section, we discuss how the width of the main memory’s data bus impacts pauses. The

data width indicates the number of contiguous bytes that can be loaded or stored in a single

memory cycle. We changed this parameter in Section 10.4.2 to increase the amount of data loaded

per fetch in the hope of increasing the proportion of memory cycles available to the collector. We

extended this idea to the IHGC by enabling it to compact and zero more than one word from the

same object during a single state transition.

In general, increasing the data bus width decreases collection pauses as shown in Figure 10.8.

However, the significance of the effect depends on the program. Programs, like recursion and

json_dumps, where the compact stage of the collection cycle is relatively long, gain substantial

benefits as the data width increases. For example, json_dumps allocates many small objects that

the IHGC has to either copy or zero. So doubling the data width from 8 to 16 bytes reduces pauses

by 10% although a further doubling does not have nearly as much impact because words from

multiple objects cannot be copied or zeroed in a single memory cycle.

Programs where the collector spends most of its time marking do not benefit much from

increasing the data width. For example, fannkuch and nqueens only experience about 3% reduction

in pauses with each doubling of the data width. The reason is that we did not optimize the IHGC’s

marking stage to take advantage of the full data width. So objects are still scanned one word at a

time during the marking stage, but this can be easily rectified by modifying the state machine to,

for instance, skip over multiple words that do not contain pointers when scanning deep objects.

10.4.3.4 Caching Stack Frame Metadata

Computer architectures have designated registers to reference code (pc) and the stack (sp).

Additionally, there are often architectural registers for referencing objects like global variables

or constant pools. In BeyondRISC, these registers are special-purpose meaning that they can

only be read or written by a small subset of instructions; special-purpose registers cannot be

used in arbitrary computations. Figure 10.9 shows that instructions using a special-purpose

175

CHAPTER 10. EVALUATION OF THE IHGC MICROARCHITECTURE

(a) TACLe, BEEBS and egui.

(b) MicroPython.

Figure 10.8: Proportion of clock cycles that the garbage collector pauses the user’s program as the
data width and heap size increase. A 4 byte data width indicates that the IHGC either loads or
stores 4 bytes per state transition, but the processor loads 8 bytes per instruction fetch. For every
other data width in the figure, i.e. 8, 16 and 32 bytes, the amount of data moved by the IHGC
equals the number of bytes loaded per instruction fetch. Linked stacks are used in all cases.

register operand as a base pointer to access memory are executed very frequently. In particular,

stack accesses using the sp account for 20-50% of the executed memory instructions in most of

our benchmarks. This observation motivated a microarchitectural optimization that attempts to

reduce the proportion of memory cycles used for instruction execution.

Memory instructions in an IHGC system are executed in two steps: the directory is accessed

first, then the main memory. But the directory does not need to be read if the processor has

a copy of the base address and size metadata for the object being accessed. In this case, the

execution of the memory instruction takes one memory cycle less while the overall latency

remains unchanged, so more memory cycles are potentially available for the IHGC. We can

implement this optimization by caching object metadata in the processor’s pipeline when it is

first accessed; subsequent memory accesses to the same object simply use the information in the

176

10.4. RESULTS

(a) TACLe, BEEBS, egui.

(b) MicroPython.

Figure 10.9: Distribution of memory access instruction segregated by type. ‘Code’ instructions
implicitly use the pc register as the base pointer for the memory access. ‘Stack’ and ‘Global’
are analogous to ‘Code’, but for memory instructions accessing the top stack frame and global
variables respectively. ‘Other’ refers to generic memory access instructions that use a general-
purpose register as a base pointer.

cache instead of reading the directory. However, it is difficult to realize this optimization for a

large number of objects because the cache contents need to be synchronized with the directory as

the IHGC compacts. Therefore, we modified our SystemC model to only cache the metadata for

the top stack frame, i.e. the object referenced by the sp.

The proportion of memory cycles available to the IHGC is shown in Figure 10.10 for Beyon-

dRISC systems with and without caching the stack frame metadata. According to the plot, the

IHGC has 0-10% more memory cycles in the system with the cache in comparison to the system

without it. This marginal increase is expected because, as a rule of thumb, 30% of instructions

correspond to loads and stores in a program. So only 15% of all instructions have the potential

to free up memory cycles for the IHGC if we assume that 50% of memory access instructions

use the sp as a base pointer because 30÷2= 15%. Ignoring memory accesses at the housekeep

pipeline stage, each instruction accessing the stack would free up one memory cycle out of the

two it normally uses, so we can expect only 15%÷2= 7% more memory cycles for the IHGC in

177

CHAPTER 10. EVALUATION OF THE IHGC MICROARCHITECTURE

(a) TACLe, BEEBS, egui.

(b) MicroPython.

Figure 10.10: Proportion of memory cycles available for the IHGC when the stack object’s base
address and size, i.e. the object referenced by the sp register, is and is not cached.

this case.

The extra memory cycles available to the IHGC in the system caching the sp metadata reduce

pauses by up to 5% as shown in Figure 10.11. This gain is modest, but the caching optimization

is very simple to implement. Also, it requires little extra hardware: a small register for the cache

and a few gates for the control logic. It would be feasible to extend this scheme to cache metadata

for references from a few other registers to achieve further reductions in pauses. As a result, the

caching optimization is suitable for embedded systems despite the modest gain.

10.4.4 Pipeline Stalls

The microarchitecture of the BeyondRISC processor aims to minimize pipeline stalls. But se-

quences of memory access instructions can give rise to stalls due to contention when accessing

the directory as explained in Section 9.3.4. Specifically, a stall occurs when a memory access

instruction that accesses the directory during the housekeep pipeline stage is immediately fol-

178

10.4. RESULTS

(a) TACLe, BEEBS, egui.

(b) MicroPython.

Figure 10.11: Proportion of clock cycles that the garbage collector pauses the user’s program
when the stack object’s base address and size, i.e. the object referenced by the sp register, is and
is not cached. Linked stacks are used in all cases.

lowed by a load or newm instruction. For example, the housekeep stage must set the deep flag for

an object when a store writes a pointer into that object. The housekeep stage must also mark

a pointer read from main memory while executing a load instruction. Both operations require

accessing the directory. Therefore, the pipeline is stalled for one memory cycle when the store is

immediately followed by the load because the directory is single-ported and can only serve one

request per memory cycle.

The portion of clock cycles that the pipeline is stalled due to directory contention at housekeep

is shown in Figure 10.12. Clearly, the delays are almost negligible as in all cases the stalls account

for less than 1% of a program’s run-time. Also, the proportion of stalled clock cycles increases

slightly when collection pauses during allocations decrease. For example, Figure 10.5 shows

that collection pauses are minimal when the stacklet size is 1024 words, and consequently, the

proportion of stalled clock cycles increases in that case. This is because the total run-time of a

179

CHAPTER 10. EVALUATION OF THE IHGC MICROARCHITECTURE

(a) TACLe, BEEBS and egui.

(b) MicroPython.

Figure 10.12: Proportion of clock cycles that the pipeline is stalled due to contention when
accessing the directory. A stacklet size of 0 words corresponds to linked stack frames. The
processor’s data width is 8 bytes in all cases.

program decreases when collection pauses are reduced, so pipeline stalls related to directory

contention are proportionally higher.

The performance impact of pipeline stalls related to directory contention is negligible because

the instruction sequences likely to cause these stalls are rare. We identified three such sequences:

1. A newm followed by a load instruction that reads a pointer from main memory. This causes

a stall as the housekeep stage must unconditionally read and write the directory record

of the newly allocated handle as described in Section 9.3.4.4. However, this sequence of

instructions rarely happens in our programs because newm is only executed in two cases: to

allocate a stack frame and inside our malloc implementation. In the former, the newm is

usually followed by stores as the program saves the registers to the stack. Inside malloc,

the newm is immediately followed by a branch to return to the caller function.

180

10.5. SUMMARY

2. A memory access instruction followed by newm can give rise to directory contention. The

stall only occurs if the memory access instruction stores a pointer or loads an unmarked

pointer while the IHGC is marking. Once again, this situation rarely occurs in practice

because newm is generally the first instruction executed when entering a procedure, so it is

preceded by a branch instead of a memory access instruction.

3. A memory access instruction followed by a load can also give rise to directory contention

while the IHGC is marking. The stall only occurs if the first instruction loads an unmarked

pointer or stores a pointer and the subsequent load reads a pointer from memory. But few

coding patterns execute instructions that meet these conditions as programs manipulate

data more often than pointers.

In summary, the run-time overheads of pipeline stalls due to directory contention are neg-

ligible because the conditions causing the stalls are rarely met. Therefore, optimizing these

stalls yields few performance improvements at the expense of a potentially large hardware

investment. For example, implementing the directory using dual-ported memories, as discussed

in Section 9.3.2, eliminates the stalls and improves performance by less than 1%, but this change

almost doubles the hardware cost of the directory.

10.5 Summary

We evaluated the IHGC through simulation using a SystemC model of the hypothetical microar-

chitecture for a BeyondRISC processor described in Chapter 9. For these experiments, we also

used a production-quality compiler with a custom backend that takes into account the features

provided by the IHGC. In comparison to the experimental setup from Chapter 7, the system used

here implements an exact collector, so heap memory requirements are generally lower although

programs that allocate large amounts of small objects incur memory overheads due to the object

header.

The results indicate that a BeyondRISC system implementing linked stacks introduces

substantial program pauses. This occurs because stack frames are allocated faster than they can

be reclaimed even when the system is supplied with four times the minimum amount of memory

required to run the program. These pauses can be completely eliminated using stacklets at the

expense of reduced memory access bounds checking capabilities and potentially higher memory

requirements. Also, the stacklet size must be carefully chosen to avoid introducing pauses. Finally,

we observed that two hardware techniques, namely increasing the data width of the memory bus

and caching object metadata, can be implemented to reduce pauses by up to 10%.

181

Part IV

Conclusions

183

C
H

A
P

T
E

R

11
CONCLUSIONS AND FUTURE WORK

Modern programming languages are ubiquitous in web services and mobile phone apps. These

languages are successful because they provide high-level data representation and control struc-

tures that improve programmer productivity and software reliability. This, coupled with the

ever-increasing capabilities of large computers, like servers and mobile phones, has accelerated

software development despite the significant performance drawbacks of modern languages when

compared to older technologies like C and C++.

Modern programming languages underpin the rapid growth of the web and mobile software

development industries. But other industries, like the Internet of Things (IoT), have seen limited

adoption of modern languages despite their productivity and reliability benefits. This is because

the vast majority of IoT devices are embedded systems with small processors and little memory

that often have real-time requirements, so they cannot tolerate the overheads and run-time

unpredictability of modern languages.

The overheads and real-time deficiencies mentioned above are not inherent to modern lan-

guages. These problems stem from the reliance on software garbage collectors to implement

modern languages on embedded systems; the collectors are simply unsuitable for efficient imple-

mentation on conventional embedded computer architectures. So in this thesis, we investigated

a shift in architecture towards hardware garbage collection. We proposed an Integrated Hard-

ware Garbage Collector (IHGC) that demonstrates how a collector can be fully implemented in

hardware alongside an embedded processor to minimize the run-time and memory overheads

inherent to software collectors. We also proposed a real-time analysis technique that shows how

the timing properties of a hardware garbage collector can be analyzed to guarantee that hard

real-time requirements are met. Thus, this thesis positions hardware garbage collection as a

viable alternative to support modern programming languages in embedded systems.

In the remainder of this chapter, we state our main contributions, propose future research

185

CHAPTER 11. CONCLUSIONS AND FUTURE WORK

directions for hardware garbage collection and conclude the thesis.

11.1 Contributions

An important contribution of this thesis is that it ties together research from hardware design,

garbage collection and real-time analysis to develop, implement and evaluate a hardware garbage

collector with real-time capabilities. To achieve this, we proposed the IHGC and explained its

main design choices in connection to the literature. We also presented a timing model of the IHGC

along with a hard real-time analysis technique to guarantee that the collector never pauses the

user’s program. Finally, we described the design of a practical embedded system with the IHGC

and evaluated its costs and performance.

11.1.1 Design of the IHGC

We proposed the IHGC, a hardware garbage collector that operates in the background concurrently

with the processor. The design uses three techniques to ensure that the collector does not normally

pause the user’s program. First, the IHGC relies on tags to accurately distinguish words with

pointers from those with regular values in memory and the registers, so the collector is exact and

its timing behavior can be statically analyzed. Second, the IHGC implements a mark-compact

algorithm fully in hardware as a small state machine having the property that each state

transition can be completed in a single memory access cycle. This enables collection operations

to be seamlessly interleaved with memory accesses from the processor without pausing the

program. And third, the IHGC implements an indirection through handles that facilitates

efficient coordination between processor and collector to maintain program correctness since both

operate concurrently.

The IHGC relies on a mechanism, conceptually similar to Baker’s read barrier [32], although

fully implemented in the hardware instead of software, to guarantee that all reachable objects

are marked and retained during a collection cycle. Also, the IHGC is tightly coupled with the

processor, in a similar fashion to Meyer’s hardware collector [113], to ensure that coordination

operations between collector and processor are performed efficiently in hardware and seamlessly

from the programmer’s point of view. These design choices eliminate program pauses and make

the collector’s timing behavior predictable, so the IHGC can be used for real-time applications.

Finally, a major contribution of our work is an investigation on how alternative choices in the

design of a hardware garbage collector impact its timing properties. For example, we compared

the benefits and drawbacks of the four basic garbage collection algorithms, i.e. mark-sweep, mark-

compact, copying and reference counting. We also discussed how using Brooks’ or Yuasa’s write

barriers [42, 195], as opposed to Baker’s read barrier, complicate the processor’s microarchitecture

and hard real-time analysis with the IHGC.

186

11.1. CONTRIBUTIONS

11.1.2 Real-time Analysis with the IHGC

We developed an analysis technique that estimates the amount of memory required by an

embedded system with a hardware garbage collector to run a given hard real-time program

without pausing. Our formulation is loosely based on Robertz and Henriksson’s proposal although

adapted to the context of a hardware garbage collector [142], i.e. the IHGC, that operates

whenever the memory is not used for instruction execution. Our contributions also include

a timing model of the IHGC along with an automated software tool to statically estimate a

program’s allocation rate and memory bandwidth usage, which are inputs required for our

analysis technique. Therefore, this thesis provides the necessary elements for programmers to

use hardware garbage collection in real-time applications.

11.1.3 The IHGC in a Practical Embedded System

We considered the design of a practical embedded system with the IHGC from three perspectives.

First, we investigated the impact of a hardware garbage collector on RISC Instruction Set

Architectures (ISA) with an emphasis on maintaining compatibility with existing programs. To

achieve this, we proposed semantic changes to instructions, like add, subtract and branches, to

ensure that existing compilers generate code that does not perform invalid operations on pointers.

Additionally, we proposed mechanisms to efficiently support other architectural features needed

in an embedded system with the IHGC such as the function call stack, I/O handling, exceptions

and interrupts. Support for these features in the context of a hardware garbage collector has

rarely been considered in the literature.

It is unlikely that a system like the IHGC would be widely adopted if we could not demonstrate

broad compatibility with existing embedded programs and modern programming languages.

Therefore, our second contribution is an assessment of the amount of effort required to port

existing open-source projects, like FreeRTOS and MicroPython, to run on an embedded system

with the IHGC. Through this work, we showed that the required porting effort is minimal for the

majority of programs and running existing software on the IHGC system often uncovers bugs.

Finally, an important contribution of our work is the microarchitecture of the IHGC alongside

a pipelined embedded processor. We discussed the main challenges in the design while taking

into account the features of a modern fabrication technology suitable for embedded systems.

11.1.4 Evaluation of the IHGC

We evaluated the IHGC’s hardware costs using a hypothetical model of the collector alongside a

pipelined processor. The results indicate that an embedded processor with the IHGC fabricated

at a 45 nm process node has an estimated clock speed of up to 350 MHz which is comparable with

that of state-of-the-art embedded processors. Also, we estimated the IHGC’s memory overheads

to be 10-20% due to the directory and tag bits.

187

CHAPTER 11. CONCLUSIONS AND FUTURE WORK

Another contribution of this thesis is an evaluation of the IHGC in terms of performance and

pauses. To achieve this, we simulated an ARM Cortex-M0 processor alongside the IHGC. Our

experiments indicate that, compared to a processor without the IHGC, our system has comparable

or better performance when running C programs and is 1.5-7 times faster when running scripts

written in Python, a modern programming language. These performance improvements are due

to the IHGC’s ability to run memory management operations in the background, so the processor

can be fully utilized to run the user’s program. In contrast, programs are eventually paused when

running on a system without the IHGC because the processor must be used to perform memory

management operations. Additionally, we empirically measured the IHGC’s pauses on simulated

ARM and BeyondRISC systems. We found that the IHGC introduces few pauses when the heap

is minimally increased, e.g. by a factor of 1.5 beyond the minimum operational requirement. The

experiments also show that features, like the memory’s data bus width and the function call

stack organization, significantly impact pauses.

We showed our real-time analysis in practice and demonstrated that programs do not pause

when running on a simulator of the ARM Cortex-M0 processor. The study showed how parameters,

like the clock speed, affect the estimated memory requirements to eliminate collection pauses.

We also discussed why existing embedded benchmarks are unsuitable to evaluate novel real-time

garbage collectors.

11.2 Future Work

This thesis shows that it is feasible to use hardware garbage collection to efficiently support

modern languages in real-time embedded systems. But further work is needed to develop a

software ecosystem around the IHGC and scale up the design to work alongside larger computer

systems. Therefore, we suggest following up the investigation from this thesis in three main

directions.

11.2.1 Software Ecosystem

A large portion of our work was dedicated to exploring the IHGC’s impact on software and

compilers. We demonstrated that existing software can be easily ported to an embedded system

with the IHGC when using the LLVM compiler and a custom backend. But the LLVM backend

developed as part of this thesis is only a prototype and needs improvement before it can be used

in production settings. Additionally, existing programs that are simply ported to an IHGC system

could see significant performance improvements if they are rewritten under the assumption that

there is a hardware garbage collector. For example, memory access bounds and other checks that

are normally implemented in software could be eliminated since the IHGC performs them in

hardware without fetching and executing additional instructions.

188

11.2. FUTURE WORK

11.2.1.1 Compilers

We developed a prototype compiler for BeyondRISC by extending LLVM with a new backend.

This compiler is suitable for our embedded system because it emits code that does not violate the

IHGC’s type constraints. However, LLVM discards type information very early on the compilation

process, so our prototype backend does not always emit the most efficient code possible. The

linker that we used in the compilation process of our experimental programs is also a prototype

and does not implement many optimizations. Thus, a future research direction is to explore how

the existing compilation toolchain could be improved to take advantage of the full set of features

offered by the IHGC.

11.2.1.2 Modern Language Implementation

Modern programming languages, like Python, C#, Go and JavaScript, are implemented using

a mixture of compilers and runtime environments. But these implementations often have soft-

ware garbage collectors baked in, so many design decisions are motivated to facilitate memory

management. Additionally, existing runtimes and compilers implement safety and reliability

mechanisms, such as memory access bounds checks, in software as this is not natively supported

in commodity hardware. Obviously, these assumptions are incorrect in a system with the IHGC,

and in fact, can often incur overheads. Therefore, there is a need to investigate how modern

languages can be efficiently implemented in an embedded system with the IHGC.

11.2.1.3 Benchmarks

This thesis showed that there is a need for an ecosystem of benchmarking software for embedded

systems. Existing benchmarks are mostly focused on measuring the run-time performance and

power consumption of embedded processors with very small kernels and C programs. But these

benchmarks ignore that the applications of embedded systems have evolved substantially in

the last few decades. Currently, these devices are required to run complex software such as

networking stacks and machine learning algorithms. As a result, there is a need to develop new

benchmark suites that capture the requirements of practical, modern embedded software and

are widely accepted by the industrial and research communities.

11.2.2 Real-Time Analysis

We presented a real-time analysis technique along with a timing model of the IHGC that allows

running programs without pauses. Both of these require input values statically extracted from

the program, so we developed an automated software tool to help with this task. However, the tool

is a prototype: it only automates the estimation of two parameters. Also, the analysis technique

introduced in this thesis is for hard real-time systems, but many embedded systems have soft

real-time requirements instead.

189

CHAPTER 11. CONCLUSIONS AND FUTURE WORK

11.2.2.1 Static Program Analysis

Our static analysis tool currently automates the process of estimating a program’s allocation

rate and memory bandwidth usage. But the tool relies on programmers to input bounds for loops

and memory allocations. Also, the tool does not estimate other parameters required by our hard

real-time analysis, like the live size and the number of pointers. Future work should focus on

overcoming these limitations, at least partially.

11.2.2.2 Soft Real-Time Garbage Collection

The analysis technique presented in this thesis is suitable for hard real-time systems that are

always required to meet timing deadlines. But a large number of embedded systems do not

have such strict timing constraints. These soft real-time systems are expected to consistently

meet their deadlines, but occasionally missing one is not catastrophic. Thus, it would be ideal to

develop alternative soft real-time analysis techniques that enable estimating, for example, the

likelihood of the system meeting a deadline. This analysis would help programmers to improve

the quality of service provided by an embedded system. In addition, changes to the IHGC’s design

can be introduced to optimize soft real-time systems. For instance, the IHGC could be extended

with a hardware mechanism that allows an operating system to forcibly increase the amount of

memory cycles available to the collector at the expense of introducing run-time delays for the

user’s program. This would enable an embedded system to avoid long pauses by increasing its

collection rate when the IHGC is under pressure.

11.2.3 Scaling Up the IHGC

This thesis studied hardware garbage collection in the context of embedded processors that have

relatively small, on-chip memories. We consider that a similar idea can be investigated for larger

systems that have more complex memory architectures and features like caching.

11.2.3.1 Caching

Modern embedded processors are being used alongside large memories to fulfil the ever-increasing

storage requirements of embedded software. The long latencies to access these memories have

motivated the use of caching to mitigate performance penalties. For example, the ARM Cortex-M7

processor, released in 2014, supports up to one level of instruction and data caches [15]. However,

the IHGC design presented in this thesis does not account for caching.

Future research should investigate how the IHGC can work with caches. We consider that

there are three main points that must be considered to achieve this. First, garbage collection

should not cause large amounts of data to be evicted from the cache while compacting, so the cache

must be indexed using object handles rather than memory addresses as it occurs in traditional

memory architectures. Second, cache lines must accommodate an object’s contents as well as

190

11.3. CONCLUSIONS

its metadata, i.e. the size, deep flag, etc, to reduce the processor’s reliance on the directory, for

example, when checking memory access bounds. And third, the IHGC must not cause data to be

loaded onto the cache during the collection process as this can evict the user program’s data thus

decreasing performance.

11.2.3.2 Distributed Memory

It is often desirable to construct embedded systems with distributed memory architectures on-chip.

These systems have multiple processors operating in parallel each with its own private memory.

The processors typically communicate over a Network on Chip (NoC). For example, the XMOS

xCORE-200 is an embedded system with 16 processors that is intended for IoT applications [193].

The collector’s task in such systems is to reclaim dead objects in all private memories, so a solution

is to include an instance of the IHGC alongside each processor. However, the collector needs

to ensure that objects referenced from outside its own private memory, e.g. another processor’s

registers, are retained. Thus, a future research direction is to investigate how the multiple IHGC

instances in a distributed embedded system can be coordinated to prevent objects from being

reclaimed by mistake.

11.2.3.3 Multi-Core Systems

Large multi-core processors are commonly used for applications like web servers and mobile

phones. These systems consist of multiple processors that all have direct access to a shared

memory. Also, there are often deep memory hierarchies with multiple levels of cache and complex

coherency mechanisms to enforce a consistent view of the memory. As the number of processors

increases, it is important to investigate whether there are sufficient spare memory cycles for

collection operations when implementing a hardware garbage collector, like the IHGC, in such

systems. Additionally, virtual memory usually features in large multi-core processors as it allows

implementing key functions of modern operating systems like process management. However,

virtual memory already imposes an indirection similar to the IHGC’s on every memory access.

Therefore, a future research direction is to investigate how a hardware garbage collector could be

implemented in large multi-core systems.

11.3 Conclusions

Researchers have long been preoccupied with developing software garbage collectors that can meet

real-time requirements. However, these collectors impose high overheads that are unacceptable

for small embedded devices. This thesis is an effort to remedy the problem by exploring a shift in

architecture from software to hardware garbage collection with a focus on efficiently supporting

modern programming languages in embedded systems. We showed that this approach delivers

substantial performance improvements with few hardware overheads when compared to software

191

CHAPTER 11. CONCLUSIONS AND FUTURE WORK

collectors. We also demonstrated that our hardware collector has timing properties that make

it ideal for use in real-time applications. We conclude that hardware garbage collectors are a

viable alternative to designing real-time embedded systems that can efficiently support modern

programming languages.

192

Appendices

193

A
P

P
E

N
D

I
X

A
INTEGRATED HARDWARE GARBAGE COLLECTOR STATE MACHINE

This appendix contains the speccam specification of the Integrated Hardware Garbage Collector’s

(IHGC) state machine. speccam is a notation language to facilitate the specification and behavioral

descriptions of the hardware at a high level. speccam is based on the occam 2 programming

language developed at INMOS Ltd [80].

The contents of this appendix are a detailed specification of the system-level description of

the IHGC in Chapter 5. This specification does not describe the microarchitecture of the state

machine. However, it can be used as a starting point for a working implementation of the IHGC

in either a Hardware Description Language (HDL), such as Verilog, or a simulation environment

using any programming language. Only minor details, like error detection and containment,

have been omitted or simplified in this specification as their implementation depends on the

processor’s microarchitecture and the instruction set.

A.1 Notation

speccam programs are built from processes. This specification uses five kinds of processes.

skip: A process that starts, performs no action and terminates.

Assignment: Assigns the result of an expression to a variable and then terminates. The assign-

ment operator is ←.

Parallel: Lists multiple processes that are performed concurrently. All processes of a parallel

block start simultaneously, and proceed together. The parallel block terminates when all its

processes terminate. Processes in a parallel block are separated by the & operator.

195

APPENDIX A. INTEGRATED HARDWARE GARBAGE COLLECTOR STATE MACHINE

Replicator: Produces a fixed number of similar processes that are performed in parallel. Repli-

cators use the syntax i is s for n in P(i) where i is the index value, s is the first index, n

is the number of times that the process is replicated and P is the replicated process.

Conditional: Lists multiple processes each guarded by a boolean expression. The boolean ex-

pressions are evaluated in the order they are listed within the conditional. If a boolean

expression evaluates to true its associated process is performed, and the conditional termi-

nates [80]. The contents of a conditional process are enclosed by { and } and each case is

separated by the | operator. A conditional case consists of a boolean expression followed by

the ⇒ operator followed by a process.

Processes can be grouped using procedures and functions. Functions must be terminated by a

return process that evaluates an expression and returns its result to the caller. Expressions can

be abbreviated at the beginning of a function or procedure or at the beginning of the program

using the keyword val. Similarly, variables can be aliased to a different name using the keyword

alias. A name may alias one of an arbitrary number of elements in a conditional expression. For

example, the declaration

alias n is (a ⇒ b

| c ⇒ d

):

aliases the name n to variable b if a evaluates to true, otherwise to variable d if c evaluates

to true.

bit is the basic data type in speccam; it can be used to declare a scalar variable or multi-

dimensional arrays. Arrays are declared by prefixing the type with [followed by the array size

followed by]. The array size must be a constant integer. bool is the type for boolean values.

A.2 Definitions

The IHGC is tightly coupled with the processor and does not normally pause the user’s program.

The IHGC and processor both share access to the main memory that we define as an array of

msz words each containing bpw bits per word. The IHGC also has read-only access to an array

regs with rsz elements that represent the machine’s register file. A separate regsbuf buffer, that

the processor cannot modify, is used to make a copy of the register file contents at the start of the

collection cycle.

[msz][bpw]bit mem:

[rsz][bpw]bit regs:

[rsz][bpw]bit regsbuf:

The IHGC uses exact garbage collection as it distinguishes pointers using type information.

Every word in memory and the registers has a 1-bit tag that indicates whether it contains a

196

A.2. DEFINITIONS

Identifier Description

addr The object’s base address in physical memory
size The object’s size in bytes
list Space to store a handle to chain entries into linked lists

mark The garbage collection mark flag
deep Flag indicating whether the object is deep

Table A.1: Metadata items stored in each directory entry.

pointer or a data value. The tag is stored in the most significant bit of a word, i.e. at index bpw−1,

and can be easily accessed using the syntax w.ptr. For example, mem[0].ptr contains the tag

of the word at index 0 in memory. The remaining bpw−1 bits in a word contain the last value

stored at that location.

Words containing pointers have their tag bits set. The remaining bits in the pointer word

are conceptually split into handle and offset. These components can be conveniently accessed

using the syntax w.handle and w.offset respectively. The handle uniquely identifies the referenced

object and is an index into the directory. We define the directory as an array of dsz entries each

containing a configurable amount of bits bpe depending on the system’s requirements.

[dsz][bpe]bit dir:

Each directory entry contains enough space to accommodate the metadata items listed in

Table A.1. The individual components of a directory entry can also be easily accessed using the ’.’

syntax along with the identifiers in the Table A.1. For instance, dir[1].deep refers to the deep flag

of the entry at index 1. A NULL pointer is defined for convenience with the tag set and the handle

and offset zeroed; therefore, the element at index 0 in the directory is unused.

The collector uses several registers to store its internal state. Some of these are also used by

the processor to perform mark on load and redirection operations while executing memory access

instructions. The state register contains the 4-bit identifier of the current state. Each individual

state, its speccam identifier and transitions are shown in Figure A.1.

[4]bit state:

The IHGC compacts live objects by copying them toward the lowest memory address, which

implies that the free memory is similarly clustered at the high memory addresses. The heappoint

is the register that indicates the boundary between the live and free memory clusters; it points

to the lowest location in physical memory that is free. A related register, livesize, stores the

aggregated size of all objects marked during the current collection cycle. Both the heappoint and

livesize registers must have as many bits bpa as the addr component in the directory.

[bpa]bit heappoint:

[bpa]bit livesize:

197

APPENDIX A. INTEGRATED HARDWARE GARBAGE COLLECTOR STATE MACHINE

A free variable contains the handle of the directory entry at the head of a linked list of free

handles. The entries are chained using the list component from the directory. Another list of

handles, next, is used by the collector during a cycle to maintain a record of the live and deep

objects that have been marked but are yet to be scanned. Both the free and next registers have as

many bits bph as the handle component of a pointer.

[bph]bit free:

[bph]bit next:

The register regindex records the index of the register that will be processed in the next state

transition when the IHGC is scanning the roots. Clearly, this register must contain enough bits

bpri to represent the index of every element in the register file regs without overflowing.

[bpri]bit regindex:

The IHGC uses six registers to process objects at both the mark and compact stages of the

collection cycle. obj contains the handle of the object being processed. For example, obj is set to

the handle of the object being marked during the marking stage. The related registers src and

wsz contain an object’s physical address, i.e. the addr component from the directory, and its size

respectively. The index register tracks the index of the word currently being processed by the

collector. The dest register records the new memory address of an object being relocated during

the compact stage. And the buffer register is a temporary buffer that stores the word being copied

while compacting.

[bph]bit obj:

[bpa]bit src:

[bpa]bit dest:

[bpa]bit wsz:

[bpa]bit index:

[bpw]bit buffer:

Finally, the alloc and oomcount variables are used to detect basic out-of-memory errors, e.g.

when the program’s live size exceeds the memory size. alloc has two components, the first is

alloc.waiting which signals whether the processor is currently paused waiting for an allocation to

complete. The second, alloc.wsize is only valid when alloc.waiting is set. It indicates the minimum

number of free bytes required to fulfil the pending allocation request that caused the collection

pause. The IHGC counts the number of collection cycles that have been performed, using the

oomcount register, after an allocation gave rise to a pause, i.e. when alloc.waiting is set. An out-of-

memory error is raised when two collection cycles are performed, so oomcount is effectvely a 1-bit

flag. This mechanism is only a placeholder to detect and report basic out-of-memory conditions in

this specification. But it is unsuitable for complex multi-threaded embedded systems as the alloc

and oomcount registers are unable to track pauses caused by more than one process.

[bpa + 1]bit alloc:

198

A.3. INITIALIZATION

MARK
INIT

MARK
SCAN
REG

MARK
ADD
REG

MARK
NEXT
OBJ

MARK
SCAN
OBJ

MARK
ADD
OBJ

COMPACT
SCAN

COMPACT
READ

COMPACT
CLEAR

COMPACT
WRITE

COMPACT
ZERO

COMPACT
END

Initialize/End Mark Roots Mark Objects Compact

Figure A.1: IHGC state machine corresponding to the speccam specification. The state names
in the image are the same as the state identifiers used throughout the code with ’_’ replaced by
spaces.

bit oomcount:

A.3 Initialization

The IHGC is initialized by a simple state transition that copies the register file contents into a

buffer of shadow registers. The regindex register is also set to 0 and the collector transitions to

the mark roots stage.

procedure MarkInit():

199

APPENDIX A. INTEGRATED HARDWARE GARBAGE COLLECTOR STATE MACHINE

{ i is 0 for REGS_COUNT in regsbuf[i] ← regs[i]

& state, regindex ← MARK_SCAN_REG, 0

}

A.4 Mark Roots

The IHGC scans the contents of the shadow registers during the mark roots stage. Each pointer

found in the shadow registers is processed for marking using the MARK_ADD_REG state. Unmarked

objects referenced by pointers in the register file are marked and their size is added to the livesize

register. The newly marked object’s handle is also inserted at the front of the next list if the object

is deep.

procedure MarkScanReg():

val indexoutbounds is regindex = rsz:

val indexinbounds is regindex < rsz:

val isnotnull is regsbuf[regindex] 6= NULL:

val reghasptr is regsbuf[regindex].ptr and isnotnull:

{ indexinbounds ⇒ { reghasptr ⇒ { obj ← regsbuf[regindex].handle

& state, regindex ← MARK_ADD_REG, regindex + 1

}

| not reghasptr ⇒ regindex ← regindex + 1

}

| indexoutbounds ⇒ state ← MARK_NEXT_OBJ

}

procedure MarkAddReg():

val nlivesize is livesize + wordcount(dir[obj].size) + 1:

{ not dir[obj].mark ⇒ { not dir[obj].deep ⇒ { dir[obj].mark, livesize ← true, nlivesize

& state ← MARK_SCAN_REG

}

| dir[obj].deep ⇒ { dir[obj].list, next ← next, obj

& dir[obj].mark, livesize ← true, nlivesize

& state ← MARK_SCAN_REG

}

}

| dir[obj].mark ⇒ state ← MARK_SCAN_REG

}

A.5 Mark Objects

The IHGC processes the next list in search of pointers to unmarked live objects. Each handle is

popped from the head of the next list and the contents of its corresponding object are scanned

one word at a time. Unmarked objects referenced by pointers in deep objects are marked and

200

A.5. MARK OBJECTS

their size is added to the livesize register. The newly marked object’s handle is also inserted at

the front of the next list if the object is deep. The mark objects stage terminates when all live and

deep objects have been marked and scanned; the next list is empty and the IHGC transitions to

the compact stage.

procedure MarkNextObj():

val hasnext is next 6= NULL.handle:

val isheapempty is heappoint = 0:

val needscompact is (not hasnext) and (not isheapempty):

{ hasnext ⇒ { src, wsz ← dir[next].addr, wordcount(dir[next].size)

& index, next, state ← 1, dir[next].list, MARK_SCAN_OBJ

}

| isheapempty ⇒ state ← COMPACT_END

| needscompact ⇒ dest, src, obj, state ← 0, 0, mem[0].handle, COMPACT_SCAN

}

procedure MarkScanObj():

val indexinbounds is index ≤ wsz:

val hasnext is next 6= NULL.handle:

val waddr is src + index:

{ indexinbounds ⇒ { mem[waddr].ptr ⇒ { obj ← mem[waddr].handle

& state ← MARK_ADD_OBJ

& index ← index + 1

}

| not mem[waddr].ptr ⇒ index ← index + 1

}

| not hasnext ⇒ state ← MARK_NEXT_OBJ

| hasnext ⇒ { next, src, index ← dir[next].list, dir[next].addr, 1

& wsz ← wordcount(dir[next].size)

}

}

procedure MarkAddObj():

val nlivesize is livesize + wordcount(dir[obj].size) + 1:

val needsmark is (not NULL) and (not dir[obj].mark):

{ needsmark ⇒ { not dir[obj].deep ⇒ { dir[obj].mark, livesize ← true, nlivesize

& state ← MARK_SCAN_OBJ

}

| dir[obj].deep ⇒ { dir[obj].list, next ← next, obj

& dir[obj].mark, livesize ← true, nlivesize

& state ← MARK_SCAN_OBJ

}

}

| not needsmark ⇒ state ← MARK_SCAN_OBJ

}

201

APPENDIX A. INTEGRATED HARDWARE GARBAGE COLLECTOR STATE MACHINE

A.6 Compact

During the compact stage, the IHGC processes memory starting from the lowest address up to

the heappoint. The header word of every object in memory is loaded to determine its handle.

The IHGC then uses this information to retrieve the corresponding directory entry. Marked

objects are retained and copied toward the bottom of the memory space one word at a time if

necessary. Unmarked objects are reclaimed; their handles are added to the free list and their

memory locations are zeroed or overwritten with live objects.

procedure CompactScan():

val nsrc is src + wordcount(dir[obj].size) + 1:

val wcount is wordcount(dir[obj].size):

val needscompact is src 6= dest:

val gcended is nsrc = heappoint:

val isoverwritten is (src + wcount) < livesize:

val needspartzero is src < livesize:

val needsfullzero is not needspartzero:

{ dir[obj].mark ⇒ { dir[obj].mark, wsz ← false, wcount

& { needscompact ⇒ index, state ← 0, COMPACT_READ

| gcended ⇒ livesize, state ← 0, COMPACT_END

| not gcended ⇒ { src, dest ← nsrc, nsrc

& obj ← mem[nsrc].handle

}

}

}

| not dir[obj].mark ⇒ { dir[obj].list, free, wsz ← free, obj, wcount

& { isoverwritten ⇒ src, obj ← nsrc, mem[nsrc].handle

| needspartzero ⇒ index, state ← livesize - src, COMPACT_ZERO

| needsfullzero ⇒ index, state ← 0, COMPACT_ZERO

}

}

}

procedure CompactZero():

val indexinbounds is index ≤ wsz:

val nsrc is src + wsz + 1:

val gcended is nsrc = heappoint:

{ indexinbounds ⇒ mem[src + index], index ← 0, index + 1

| gcended ⇒ heappoint, livesize, state ← dest, 0, COMPACT_END

| not gcended ⇒ src, obj, state ← nsrc, mem[nsrc].handle, COMPACT_SCAN

}

procedure CompactRead():

val indexinbounds is index ≤ wsz:

val nsrc is src + wsz + 1:

val ndest is dest + wsz + 1:

202

A.7. TERMINATION

val gcended is nsrc = heappoint:

val isoverwritten is (src + index) < livesize:

val needspartzero is not isoverwritten:

{ indexinbounds ⇒ { buffer ← mem[src + index]

& { isoverwritten ⇒ state ← COMPACT_WRITE

| needspartzero ⇒ state ← COMPACT_CLEAR

}

}

| gcended ⇒ { dir[obj].addr, dest ← dest, ndest

& heappoint, livesize, state ← ndest, 0, COMPACT_END

}

| not gcended ⇒ { dir[obj].addr, dest ← dest, ndest

& src, obj, state ← nsrc, mem[nsrc].handle, COMPACT_SCAN

}

}

procedure CompactClear():

mem[src + index], state ← 0, COMPACT_WRITE

procedure CompactWrite():

mem[dest + index], index, state ← buffer, index + 1, COMPACT_READ

A.7 Termination

A collection cycle terminates when the IHGC transitions to the COMPACT_END state. The imple-

mentation details of the end state transition are dependent on the processor’s microarchitecture

and the instruction set. Therefore, the below specification of the end state is simply a placeholder

that performs out-of-memory error checks and raises an exception when a failure is detected.

procedure CompactEnd():

val nofreespace is heappoint + alloc.wsize + 1 > msz:

val nofreehandle is free = NULL.handle:

val cannotalloc is nofreehandle or nofreespace:

val iscpupaused is alloc.waiting and cannotalloc:

{ iscpupaused ⇒ { oomcount = 1 ⇒ exception()

| oomcount = 0 ⇒ state, oomcount ← MARK_INIT, 1

}

| not iscpupaused ⇒ state, oomcount ← MARK_INIT, 0

}

A.8 Memory Access

Load and store procedures are provided for programs to access memory. The implementation

of these procedures is tightly integrated with the processor’s pipeline to eliminate coordination

203

APPENDIX A. INTEGRATED HARDWARE GARBAGE COLLECTOR STATE MACHINE

delays between processor and IHGC. Both load and store procedures are augmented with func-

tionality to redirect memory accesses to the correct location while the IHGC is compacting. In

addition, load operations process the pointer read for marking when the IHGC is in the marking

stage. Store operations set an object’s deep flag when a pointer is written into that object.

procedure LoadWord(val pointer, alias output):

val rwindex is bytetoword(pointer.offset) + 1:

val srcaddr is dir[pointer.handle].addr:

val atbuffer is (pointer.handle = obj) and (rwindex = index):

val atdest is (pointer.handle = obj) and (rwindex < index):

val atsrc is (pointer.handle 6= obj) or (rwindex ≥ index):

val srcword is (atbuffer and isgcwriting() ⇒ buffer

| atdest and isgcmoving() ⇒ mem[dest + rwindex]

| atsrc ⇒ mem[srcaddr + rwindex]

):

val ismarked is srcword.ptr and dir[srcword.handle].mark:

val isunmarked is not ismarked:

{ output ← srcword

& { isunmarked and isgcmarking() ⇒ markObject(srcword.handle)

| ismarked or (not isgcmarking()) ⇒ skip

}

}

procedure StoreWord(val pointer, val input):

val rwindex is bytetoword(pointer.offset) + 1:

val srcaddr is dir[pointer.handle].addr:

val atbuffer is (pointer.handle = obj) and (rwindex = index):

val atdest is (pointer.handle = obj) and (rwindex < index):

val atsrc is (pointer.handle 6= obj) and (rwindex ≥ index):

alias destword is (atbuffer and isgcwriting() ⇒ buffer

| atdest and isgcmoving() ⇒ mem[dest + rwindex]

| atsrc ⇒ mem[srcaddr + rwindex]

):

{ destword ← input

& { input.ptr ⇒ dir[pointer.handle].deep ← true

| not input.ptr ⇒ skip

}

}

A.9 Memory Allocation

A memory allocation procedure implements the newm instruction. Allocations are simple because

the free space is clustered at one end of the memory. So the IHGC only needs to pop a handle

from the free list, update the directory with the object’s information, increment the heappoint

204

A.10. HELPER FUNCTIONS AND PROCEDURES

and store the object’s header word in memory. Objects are allocated marked to ensure that they

are retained in the current collection cycle.

procedure NewM(val allocsz, alias output)

val nofreespace is heappoint + wordcount(allocsz) + 1 > msz:

val nofreehandle is free = NULL.handle:

val cannotallocate is nofreespace or nofreehandle:

val canallocate is not cannotallocate:

val nlivesize is livesize + wordcount(allocsz) + 1:

{ cannotallocate ⇒ alloc.waiting, alloc.wsize ← true, wordcount(allocsz)

| canallocate ⇒ { dir[free].addr, dir[free].size ← heappoint, allocsz

& dir[free].deep ← false

& { isgccollecting() ⇒ { dir[free].mark ← true

& livesize ← nlivesize

}

| not isgccollecting() ⇒ dir[free].mark ← false

}

& heappoint ← heappoint + wordcount(allocsz) + 1

& mem[heappoint].handle ← free

& mem[heappoint].ptr ← true

& output.ptr, output.handle, output.offset ← true, free, 0

& free, alloc.waiting ← dir[free].list, false

}

}

A.10 Helper Functions and Procedures

The following functions and procedures are provided to simplify the specification of the IHGC’s

state machine.

procedure markObject(val objhan):

val nlivesize is livesize + wordcount(dir[objhan].size) + 1:

{ dir[objhan].deep ⇒ { dir[objhan].list, next ← next, objhan

& dir[objhan].mark, livesize ← true, nlivesize

}

| not dir[objhan].deep ⇒ dir[objhan].mark, livesize ← true, nlivesize

}

function [bpa]bit wordcount(val [bpa]bit s)

val Bpw is bpw ÷ 8:

{ return ((s % Bpw) = 0 ⇒ s ÷ Bpw

| true ⇒ (s + Bpw) ÷ Bpw

)

}

205

APPENDIX A. INTEGRATED HARDWARE GARBAGE COLLECTOR STATE MACHINE

function [bpa]bit bytetoword(val [bpa]bit s)

return s ÷ (bpw ÷ 8)

function bool isgcwriting():

return (state = COMPACT_CLEAR) or (state = COMPACT_WRITE)

function bool isgcmoving():

return (state = COMPACT_READ) or (state = COMPACT_CLEAR) or (state = COMPACT_WRITE)

function bool isgcmarking():

return (state = MARK_SCAN_REG) or (state = MARK_CHECK_REG) or

(state = MARK_ADD_REG) or (state = MARK_SCAN_OBJ) or

(state = MARK_CHECK_OBJ) or (state = MARK_ADD_OBJ) or

(state = MARK_NEXT_OBJ)

function bool isgccollecting():

return (state 6= MARK_INIT) and (state 6= COMPACT_END)

206

BIBLIOGRAPHY

[1] SNU real-time benchmarks.

http://www.cprover.org/goto-cc/examples/snu.html.

[Online; last accessed 22-April-2020].

[2] ABSINT, aiT.

https://www.absint.com/ait/index.htm.

[Online; last accessed 29-October-2020].

[3] ABSINT, StackAnalyzer.

https://www.absint.com/stackanalyzer/index.htm.

[Online; last accessed 03-October-2019].

[4] AICAS GMBH, JamaicaVM.

https://www.aicas.com/cms/en/JamaicaVM.

[Online; last accessed 22-April-2020].

[5] E. ALBERT, S. GENAIM, AND M. GÓMEZ-ZAMALLOA GIL, Live heap space analysis for

languages with garbage collection, in Proceedings of the 2009 International Symposium

on Memory Management, 2009, pp. 129–138.

[6] R. E. ALY AND M. A. BAYOUMI, Low-power cache design using 7T SRAM cell, IEEE

Transactions on Circuits and Systems II: Express Briefs, 54 (2007), pp. 318–322.

[7] A. AMAYA GARCÍA, MicroPython porting code and evaluation scripts for the IHGC.

https://github.com/andresag01/micropython/tree/sure-port-gc/ports/sure_gc,

2018.

[Online; last accessed 4-August-2021].

[8] A. AMAYA GARCÍA, Thumb timing simulator.

https://github.com/andresag01/thumb-sim, 2018.

[Online; last accessed 06-April-2020].

[9] A. AMAYA GARCÍA, Incorrect loop conditional.

https://github.com/micropython/micropython/issues/6066, 2020.

[Online; last accessed 28-May-2020].

207

http://www.cprover.org/goto-cc/examples/snu.html
https://www.absint.com/ait/index.htm
https://www.absint.com/stackanalyzer/index.htm
https://www.aicas.com/cms/en/JamaicaVM
https://github.com/andresag01/micropython/tree/sure-port-gc/ports/sure_gc
https://github.com/andresag01/thumb-sim
https://github.com/micropython/micropython/issues/6066

BIBLIOGRAPHY

[10] A. AMAYA GARCÍA AND K. GEORGIOU, Bristol Worst-Case Analysis Tool.

https://github.com/andresag01/bwca, 2019.

[Online; last accessed 4-August-2021].

[11] AMAZON WEB SERVICES INC, FreeRTOS.

https://www.freertos.org, 2020.

[Online; last accessed 14-05-2020].

[12] AMAZON WEB SERVICES INC, Memory management.

https://www.freertos.org/a00111.html, 2020.

[Online; last accessed 14-May-2020].

[13] A. W. APPEL, Simple generational garbage collection and fast allocation, Software: Practice

and Experience, 19 (1989), pp. 171–183.

[14] A. W. APPEL, J. R. ELLIS, AND K. LI, Real-time concurrent collection on stock multiproces-

sors, in Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language

Design and Implementation, 1988, pp. 11–20.

[15] ARM LIMITED, ARM Cortex-M series processors.

https://developer.arm.com/ip-products/processors/cortex-m.

[Online; last accessed 14-July-2020].

[16] ARM LIMITED, ARM architecture reference manual, 1996.

[17] ARM LIMITED, The ARM-THUMB procedure call standard.

http://infocenter.arm.com/help/topic/com.arm.doc.espc0002/ATPCS.pdf, 2000.

[Online; last accessed 28-April-2020].

[18] ARM LIMITED, ARM architecture reference manual, 2005.

[19] ARM LIMITED, Cortex-M0 technical reference manual, 2009.

[20] ARM LIMITED, ARMv6-M architecture reference manual, 2017.

[21] ARM LIMITED, GNU ARM embedded toolchain v7.3.1.

https://developer.arm.com/tools-and-software/open-source-software/

developer-tools/gnu-toolchain/gnu-rm, 2017.

[Online; last accessed 06-April-2020].

[22] ARM LIMITED, Mbed TLS.

https://github.com/ARMmbed/mbedtls, 2019.

[Online; last accessed 23-January-2019].

208

https://github.com/andresag01/bwca
https://www.freertos.org
https://www.freertos.org/a00111.html
https://developer.arm.com/ip-products/processors/cortex-m
http://infocenter.arm.com/help/topic/com.arm.doc.espc0002/ATPCS.pdf
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm
https://github.com/ARMmbed/mbedtls

BIBLIOGRAPHY

[23] ASPENCORE, 2017 embedded markets study.

https://m.eet.com/media/1246048/2017-embedded-market-study.pdf, 2017.

[Online; last accessed 20-February-2020].

[24] I. S. ASSOCIATION ET AL., IEEE standard for standard systemc language reference manual,

IEEE Computer Society, (2012).

[25] J. AUERBACH, D. F. BACON, P. CHENG, D. GROVE, B. BIRON, C. GRACIE, B. MCCLOSKEY,

A. MICIC, AND R. SCIAMPACONE, Tax-and-spend: Democratic scheduling for real-

time garbage collection, in Proceedings of the 8th ACM International Conference on

Embedded Software (EMSOFT), 2008, pp. 245––254.

[26] J. AUERBACH, D. F. BACON, P. CHENG, AND R. RABBAH, Lime: a Java-compatible and

synthesizable language for heterogeneous architectures, in Proceedings of the ACM

International Conference on Object-Oriented Programming, Systems, Languages and

Applications (OOPSLA), 2010, pp. 89–108.

[27] D. F. BACON, P. CHENG, AND V. RAJAN, Controlling fragmentation and space consumption

in the Metronome, a real-time garbage collector for Java, ACM SIGPLAN Notices, 38

(2003), pp. 81–92.

[28] D. F. BACON, P. CHENG, AND V. RAJAN, A real-time garbage collector with low overhead

and consistent utilization, ACM SIGPLAN Notices, 38 (2003), pp. 285–298.

[29] D. F. BACON, P. CHENG, AND S. SHUKLA, And then there were none: A stall-free real-

time garbage collector for reconfigurable hardware, in Proceedings of the 33rd ACM

SIGPLAN Conference on Programming Language Design and Implementation (PLDI),

2012, pp. 23–34.

[30] D. F. BACON, S. J. FINK, AND D. GROVE, Space- and time-efficient implementation of the

Java object model, in European Conference on Object-Oriented Programming, Springer,

2002, pp. 111–132.

[31] H. G. BAKER, The Treadmill: real-time garbage collection without motion sickness, ACM

SIGPLAN Notices, 27 (1992), pp. 66–70.

[32] H. G. BAKER JR, List processing in real time on a serial computer, Communications of the

ACM, 21 (1978), pp. 280–294.

[33] M. BENGTSSON, Real-Time Garbage Collection, PhD thesis, Lund University, 1990.

[34] M. BERKELAAR, K. EIKLAND, AND P. NOTEBAERT, lp_solve version 5.5 — open source

(mixed-integer) linear programming system.

https://sourceforge.net/projects/lpsolve/, 2005.

209

https://m.eet.com/media/1246048/2017-embedded-market-study.pdf
https://sourceforge.net/projects/lpsolve/

BIBLIOGRAPHY

[Online; last accessed 16-November-2020].

[35] N. BINKERT, B. BECKMANN, G. BLACK, S. K. REINHARDT, A. SAIDI, A. BASU, J. HEST-

NESS, D. R. HOWER, T. KRISHNA, S. SARDASHTI, ET AL., The gem5 simulator, ACM

SIGARCH Computer Architecture News, 39 (2011), pp. 1–7.

[36] S. M. BLACKBURN, R. GARNER, C. HOFFMANN, A. M. KHANG, K. S. MCKINLEY,

R. BENTZUR, A. DIWAN, D. FEINBERG, D. FRAMPTON, S. Z. GUYER, ET AL., The

DaCapo benchmarks: Java benchmarking development and analysis, in Proceedings of

the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems,

Languages, and Applications, 2006, pp. 169–190.

[37] S. M. BLACKBURN AND A. L. HOSKING, Barriers: Friend or foe?, in Proceedings of the 4th

International Symposium on Memory Management, 2004, pp. 143–151.

[38] S. M. BLACKBURN AND K. S. MCKINLEY, Ulterior reference counting: Fast garbage

collection without a long wait, in Proceedings of the 18th Annual ACM SIGPLAN

Conference on Object-Oriented Programing, Systems, Languages, and Applications,

2003, pp. 344–358.

[39] G. E. BLELLOCH AND P. CHENG, On bounding time and space for multiprocessor garbage

collection, in ACM SIGPLAN Notices, vol. 34, ACM, 1999, pp. 104–117.

[40] G. BOLLELLA AND J. GOSLING, The real-time specification for Java, Computer, 33 (2000),

pp. 47–54.

[41] R. BOSCH AND M. TRICK, Integer programming, in Search Methodologies, Springer, 2005.

[42] R. A. BROOKS, Trading data space for reduced time and code space in real-time garbage

collection on stock hardware, in Proceedings of the 1984 ACM Symposium on LISP and

Functional Programming, ACM, 1984, pp. 256–262.

[43] T. CAO, S. M. BLACKBURN, T. GAO, AND K. S. MCKINLEY, The yin and yang of power

and performance for asymmetric hardware and managed software, in ACM SIGARCH

Computer Architecture News, vol. 40, IEEE Computer Society, 2012, pp. 225–236.

[44] T. E. CARLSON, W. HEIRMAN, AND L. EECKHOUT, Sniper: Exploring the level of abstraction

for scalable and accurate parallel multi-core simulation, in Proceedings of the 2011

International Conference for High Performance Computing, Networking, Storage and

Analysis, 2011, pp. 1–12.

[45] S. CASS, The top programming languages 2019.

https://spectrum.ieee.org/computing/software/the-top-programming-languages-

2019, 2019.

210

https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019

BIBLIOGRAPHY

[Online; last accessed 10-February-2019].

[46] Y. CHANG, Garbage Collection for Flexible Hard Real-Time Systems, PhD thesis, University

of York, 2007.

[47] Y. CHANG AND A. WELLINGS, Hard real-time hybrid garbage collection with low mem-

ory requirements, in Proceedings of the 27th IEEE International Real-Time Systems

Symposium (RTSS’06), IEEE, 2006, pp. 77–88.

[48] Y. CHANG AND A. WELLINGS, Garbage collection for flexible hard real-time systems, IEEE

Transactions on Computers, 59 (2010), pp. 1063–1075.

[49] C. J. CHENEY, A nonrecursive list compacting algorithm, Communications of the ACM, 13

(1970), pp. 677–678.

[50] P. CHENG AND G. E. BLELLOCH, A parallel, real-time garbage collector, ACM SIGPLAN

Notices, 36 (2001), pp. 125–136.

[51] S. CHEREM, L. PRINCEHOUSE, AND R. RUGINA, Practical memory leak detection using

guarded value-flow analysis, in 28th ACM SIGPLAN Conference on Programming

Language Design and Implementation, 2007, pp. 480–491.

[52] C. CLICK, G. TENE, AND M. WOLF, The Pauseless GC algorithm, in Proceedings of the

1st ACM/USENIX International Conference on Virtual Execution Environments, ACM,

2005, pp. 46–56.

[53] W. D. CLINGER, A. H. HARTHEIMER, AND E. M. OST, Implementation strategies for

first-class continuations, Higher-Order and Symbolic Computation, 12 (1999), pp. 7–45.

[54] G. E. COLLINS, A method for overlapping and erasure of lists, Communications of the

ACM, 3 (1960), pp. 655–657.

[55] D. DETLEFS, A hard look at hard real-time garbage collection, in Proceedings of the 7th

IEEE International Symposium on Object-Oriented Real-Time Distributed Computing,

IEEE, 2004, pp. 23–32.

[56] L. P. DEUTSCH AND D. G. BOBROW, An efficient, incremental, automatic garbage collector,

Communications of the ACM, 19 (1976), pp. 522–526.

[57] E. W. DIJKSTRA, L. LAMPORT, A. J. MARTIN, C. S. SCHOLTEN, AND E. F. M. STEFFENS,

On-the-fly garbage collection: an exercise in cooperation, in Language Hierarchies and

Interfaces: International Summer School, 1976, pp. 43–56.

211

BIBLIOGRAPHY

[58] E. W. DIJKSTRA, L. LAMPORT, A. J. MARTIN, C. S. SCHOLTEN, AND E. F. M. STEFFENS,

On-the-fly garbage collection: an exercise in cooperation, Communications of the ACM,

21 (1978), pp. 966–975.

[59] A. DUNKELS AND LWIP DEVELOPERS, Lightweight IP.

https://savannah.nongnu.org/projects/lwip/, 2019.

[Online; last accessed 23-January-2019].

[60] EMBEDDED MICROPROCESSOR BENCHMARK CONSORTIUM, EEMBC benchmarks.

https://www.eembc.org/products/, 2020.

[Online; last accessed 01-September-2020].

[61] A. ERMEDAHL, C. SANDBERG, J. GUSTAFSSON, S. BYGDE, AND B. LISPER, Loop bound

analysis based on a combination of program slicing, abstract interpretation, and invari-

ant analysis, in 7th International Workshop on Worst-Case Execution Time Analysis

(WCET’07), Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2007.

[62] H. FALK, S. ALTMEYER, P. HELLINCKX, B. LISPER, W. PUFFITSCH, C. ROCHANGE,

M. SCHOEBERL, R. B. SØRENSEN, P. WÄGEMANN, AND S. WEGENER, TACLeBench:

A benchmark collection to support worst-case execution time research, in Proceedings

of the 16th International Workshop on Worst-Case Execution Time Analysis (WCET

2016), M. Schoeberl, ed., vol. 55 of OpenAccess Series in Informatics (OASIcs), Dagstuhl,

Germany, 2016, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, pp. 2:1–2:10.

[63] M.-L. FAN, Y.-S. WU, V. P.-H. HU, C.-Y. HSIEH, P. SU, AND C.-T. CHUANG, Comparison

of 4T and 6T FinFET SRAM cells for subthreshold operation considering variability — a

model-based approach, IEEE Transactions on Electron Devices, 58 (2011), pp. 609–616.

[64] K. FARVARDIN AND J. REPPY, From folklore to fact: comparing implementations of stacks

and continuations, in Proceedings of the 41st ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, 2020, pp. 75–90.

[65] S. GATZKA, T. GEITHNER, AND C. HOCHBERGER, The Kertasarie VM.

[66] A. GAYNOR, A. VASSALOTTI, A. PITROU, A. GUPTA, B. PETERSON, B. IMPOLLONIA,

B. CANNON, C. WINTER, D. LAING, D. MALCOLM, D. JEMEROV, F. PAPA, G. BRANDL,

J. ABBATIELLO, J. YASSKIN, M. FIJALKOWSKI, R. KLECKER, S. MONTANARO,

S. BEHNEL, T. WOUTERS, V. STINNER, AND Z. WARE, The Python benchmark suite.

https://github.com/python/performance, 2018.

[Online; last accessed 31-August-2018].

[67] I. GOG, J. GICEVA, M. SCHWARZKOPF, K. VASWANI, D. VYTINIOTIS, G. RAMALINGAM,

M. COSTA, D. G. MURRAY, S. HAND, AND M. ISARD, Broom: Sweeping out garbage

212

https://savannah.nongnu.org/projects/lwip/
https://www.eembc.org/products/
https://github.com/python/performance

BIBLIOGRAPHY

collection from big data systems, in Proceedings of the 15th Workshop on Hot Topics in

Operating Systems (HotOS {XV}), 2015.

[68] S. C. GOLDSTEIN, The implementation of a threaded abstract machine, Tech. Rep.

UCB/CSD-94-818, EECS Department, University of California, Berkeley, May 1994.

[69] S. C. GOLDSTEIN, Lazy threads: compiler and runtime structures for fine-grained parallel

programming, PhD thesis, University of California, Berkeley, 1997.

[70] S. C. GOLDSTEIN, K. E. SCHAUSER, AND D. E. CULLER, Lazy threads: Implementing a

fast parallel call, Journal of Parallel and Distributed Computing, 37 (1996), pp. 5–20.

[71] D. J. GREAVES AND S. SINGH, Kiwi: Synthesis of FPGA circuits from parallel programs,

in Proceedings of the 16th International Symposium on Field-Programmable Custom

Computing Machines (FCCM), 2008, pp. 3–12.

[72] N. GRECH, K. GEORGIOU, J. PALLISTER, S. KERRISON, J. MORSE, AND K. EDER, Static

analysis of energy consumption for LLVM IR programs, in Proceedings of the 18th

International Workshop on Software and Compilers for Embedded Systems, 2015,

pp. 12–21.

[73] D. GROSSMAN, G. MORRISETT, T. JIM, M. HICKS, Y. WANG, AND J. CHENEY, Region-

based memory management in Cyclone, ACM SIGPLAN Notices, 37 (2002), pp. 282–293.

[74] F. GRUIAN AND Z. SALCIC, Designing a concurrent hardware garbage collector for small

embedded systems, in Proceedings of the Asia-Pacific Conference on Advances in Com-

puter Systems Architecture, Springer, 2005, pp. 281–294.

[75] J. GUSTAFSSON, A. BETTS, A. ERMEDAHL, AND B. LISPER, The Mälardalen wcet bench-

marks: Past, present and future, in Proceedings of the 10th International Workshop on

Worst-Case Execution Time Analysis (WCET 2010), Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik, 2010.

[76] M. R. GUTHAUS, J. E. STINE, S. ATAEI, B. CHEN, B. WU, AND M. SARWAR, OpenRAM:

An open-source memory compiler, in Proceedings of the 2016 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), IEEE, 2016, pp. 1–6.

[77] M. HAMPTON, Using contaminated garbage collection and reference counting garbage

collection to provide automatic storage reclamation for real-time systems, Master’s

thesis, Washington University, 2003.

[78] D. L. HEINE AND M. S. LAM, A practical flow-sensitive and context-sensitive C and C++

memory leak detector, in ACM SIGPLAN 2003 Conference on Programming Language

Design and Implementation, 2003, pp. 168–181.

213

BIBLIOGRAPHY

[79] R. HENRIKSSON, Scheduling garbage collection in embedded systems, PhD thesis, Lund

University, 1998.

[80] INMOS, occam 2 reference manual, Prentice hall, 1988.

[81] ISO/IEC JTC 1/SC 22, ISO/IEC 9899:2011, Information technology — Programming

languages — C, (2011).

[Online; last accessed 14-May-2020].

[82] ISO/IEC JTC 1/SC 22, ISO/IEC 14882:2017, Information technology — Programming

languages — C++, (2017).

[Online; last accessed 15-Dec-2020].

[83] S. S. IYER AND E. J. NOWAK, 45 nm SOI and beyond — getting to a general purpose

technology, in Proceedings of the 2007 IEEE International SOI Conference, IEEE, 2007,

pp. 1–4.

[84] JERRYSCRIPT, A JavaScript engine for internet of things.

https://jerryscript.net/, 2019.

[Online; last accessed 10-February-2019].

[85] A. JOANNOU, J. WOODRUFF, R. KOVACSICS, S. W. MOORE, A. BRADBURY, H. XIA,

R. N. WATSON, D. CHISNALL, M. ROE, B. DAVIS, ET AL., Efficient tagged memory, in

Proceedings of the 2017 IEEE International Conference on Computer Design (ICCD),

IEEE, 2017, pp. 641–648.

[86] J. A. JOAO, O. MUTLU, AND Y. N. PATT, Flexible reference-counting-based hardware

acceleration for garbage collection, in Proceedings of the 36th Annual International

Symposium on Computer Architecture, 2009, pp. 418–428.

[87] M. S. JOHNSTONE AND P. R. WILSON, Non-compacting memory allocation and real-time

garbage collection, PhD thesis, University of Texas at Austin, 1997.

[88] R. JONES, A. HOSKING, AND E. MOSS, The garbage collection handbook: the art of

automatic memory management, Chapman and Hall/CRC, 2016.

[89] T. KALIBERA AND R. JONES, Handles revisited: optimising performance and memory costs

in a real-time collector, ACM SIGPLAN Notices, 46 (2011), pp. 89–98.

[90] R. KATREEPALLI AND T. HANIOTAKIS, High speed power efficient carry select adder

design, in Proceedings of the 2017 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), IEEE, 2017, pp. 32–37.

[91] T. KIM, N. CHANG, N. KIM, AND H. SHIN, Scheduling garbage collector for embedded

real-time systems, ACM SIGPLAN Notices, 34 (1999), pp. 55–64.

214

https://jerryscript.net/

BIBLIOGRAPHY

[92] T. KIM, N. CHANG, AND H. SHIN, Joint scheduling of garbage collector and hard real-

time tasks for embedded applications, Journal of Systems and Software, 58 (2001),

pp. 247–260.

[93] T. KIM AND H. SHIN, Scheduling-aware real-time garbage collection using dual aperiodic

servers, in Real-Time and Embedded Computing Systems and Applications, Springer,

2004, pp. 1–17.

[94] G. KISS-VAMOSI, txt position fixes.

https://tinyurl.com/y2zq7jyr, 2019.

[Online; last accessed 8-January-2021].

[95] G. KISS-VÁMOSI, LittlevGL.

https://github.com/littlevgl/lvgl, 2019.

[Online; last accessed 23-January-2019].

[96] D. A. KRANZ, R. H. HALSTEAD JR, AND E. MOHR, Mul-T: A high-performance paral-

lel LISP, in Proceedings of the ACM SIGPLAN 1989 Conference on Programming

Language Design and Implementation, 1989, pp. 81–90.

[97] A. KWON, U. DHAWAN, J. M. SMITH, T. F. KNIGHT JR, AND A. DEHON, Low-fat pointers:

compact encoding and efficient gate-level implementation of fat pointers for spatial safety

and capability-based security, in Proceedings of the 2013 ACM SIGSAC Conference on

Computer & Communications Security, ACM, 2013, pp. 721–732.

[98] D. LEA, A memory allocator.

http://gee.cs.oswego.edu/dl/html/malloc.html, 2000.

[Online; last accessed 15-February-2019].

[99] D. LEATHERDALE, S. LAVINGTON, AND I. MACCALLUM, Atlas, 1963.

[Online; last accessed 28-April-2020].

[100] Y.-T. LI, S. MALIK, AND A. WOLFE, Efficient microarchitecture modeling and path analysis

for real-time software, in Proceedings of the 16th IEEE International Real-Time Systems

Symposium (RTSS’95), IEEE, 1995, pp. 298–307.

[101] H. LIEBERMAN AND C. HEWITT, A real-time garbage collector based on the lifetimes of

objects, Communications of the ACM, 26 (1983), pp. 419–429.

[102] LLVM FOUNDATION, The LLVM compiler infrastructure.

https://releases.llvm.org/, 2018.

[Online; last accessed 06-April-2020].

215

https://tinyurl.com/y2zq7jyr
https://github.com/littlevgl/lvgl
http://gee.cs.oswego.edu/dl/html/malloc.html
https://releases.llvm.org/

BIBLIOGRAPHY

[103] D. LOCKE, J. J. HUNT, R. ALLEN, J. NIELSEN, M. FULTON, G. BOLLELLA, D. HARDIN,

M. SCHOEBERL, T. HENTIES, A. WELLINGS, AND S. ANDERSEN, Java specification

request 302: Safety critical Java technology.

https://jcp.org/en/jsr/detail?id=302.

[Online; last accessed 20-February-2020].

[104] M. MAAS, K. ASANOVIĆ, AND J. KUBIATOWICZ, A hardware accelerator for tracing garbage

collection, in Proceedings of the 2018 ACM/IEEE 45th Annual International Symposium

on Computer Architecture (ISCA), IEEE, 2018, pp. 138–151.

[105] T. MANN, M. DETERS, R. LEGRAND, AND R. K. CYTRON, Static determination of allocation

rates to support real-time garbage collection, ACM SIGPLAN Notices, 40 (2005), pp. 193–

202.

[106] M. M. MANO AND C. R. KIME, Logic and Computer Design Fundamentals: Pearson New

International Edition, Pearson Education Limited, 2014.

[107] D. MAY, The XMOS XS1 Architecture, XMOS, 2009.

[108] D. MAY, The SURE architecture.

http://people.cs.bris.ac.uk/~dave/gcoll.pdf, 2016.

[Online; last accessed 01-April-2020].

[109] J. MCCARTHY, Recursive functions of symbolic expressions and their computation by

machine, Part I, Communications of the ACM, 3 (1960), pp. 184–195.

[110] B. MCCLOSKEY, D. F. BACON, P. CHENG, AND D. GROVE, Staccato: A parallel and

concurrent real-time compacting garbage collector for multiprocessors, Report RC24504,

IBM, (2008).

[111] M. MEYER, A novel processor architecture with exact tag-free pointers, IEEE Micro, 24

(2004), pp. 46–55.

[112] M. MEYER, An on-chip garbage collection coprocessor for embedded real-time systems,

in Proceedings of the 11th International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA’05), IEEE, 2005, pp. 517–524.

[113] M. MEYER, A true hardware read barrier, in Proceedings of the 5th International Sympo-

sium on Memory Management, ACM, 2006, pp. 3–16.

[114] MICROPYTHON.ORG, Memory manager.

https://github.com/micropython/micropython/wiki/Memory-Manager, 2018.

[Online; last accessed 07-April-2020].

216

https://jcp.org/en/jsr/detail?id=302
http://people.cs.bris.ac.uk/~dave/gcoll.pdf
https://github.com/micropython/micropython/wiki/Memory-Manager

BIBLIOGRAPHY

[115] MICROPYTHON.ORG, The MicroPython project.

https://github.com/micropython/micropython, 2018.

[Online; last accessed 31-August-2018].

[116] MISRA CONSORTIUM ET AL., MISRA-C: 2004 — guidelines for the use of the C language

in critical systems, Rapp. tech. ISBN 0, 9524156 (2004), p. 3.

[117] D. A. MOON, Garbage collection in a large LISP system, in Proceedings of the 1984 ACM

Symposium on LISP and Functional Programming, ACM, 1984, pp. 235–246.

[118] D. A. MOON, Symbolics architecture, IEEE Computer, 20 (1987), pp. 43–52.

[119] A. K. MUKHOPADHYAY, Study and performance analysis of a 32 bit arithmetic logic unit

(ALU) designed using two different logic styles in deep submicron (DSM) technology, in

Proceedings of the International Conference on VLSI and Signal Processing (ICVSP),

2014, pp. 10–12.

[120] V. NAGANATHAN, A comparative analysis of parallel prefix adders in 32nm and 45nm

static CMOS technology, PhD thesis, The University of Texas at Austin, 2015.

[121] S. NAGARAKATTE, J. ZHAO, M. M. MARTIN, AND S. ZDANCEWIC, SoftBound: Highly

compatible and complete spatial memory safety for C, ACM SIGPLAN Notices, 44

(2009), pp. 245–258.

[122] S. NETTLES AND J. O’TOOLE, Real-time replication garbage collection, ACM SIGPLAN

Notices, 28 (1993), pp. 217–226.

[123] K. D. NILSEN, Reliable real-time garbage collection of C++, Computing Systems, 7 (1994),

pp. 467–504.

[124] K. D. NILSEN AND W. J. SCHMIDT, Cost-effective object space management for hardware-

assisted real-time garbage collection, ACM Letters on Programming Languages and

Systems (LOPLAS), 1 (1992), pp. 338–354.

[125] H. NOGUCHI, S. OKUMURA, Y. IGUCHI, H. FUJIWARA, Y. MORITA, K. NII,

H. KAWAGUCHI, AND M. YOSHIMOTO, Which is the best dual-port SRAM in 45nm

process technology? — 8T, 10T single end, and 10T differential —, in Proceedings of

the 2008 IEEE International Conference on Integrated Circuit Design and Technology,

IEEE, 2008, pp. 55–58.

[126] NORDIC SEMICONDUCTOR, nRF52832: Versatile Bluetooth 5.2 SoC supporting Bluetooth

Low Energy, Bluetooth mesh and NFC.

https://www.nordicsemi.com/products/nrf52832.

[Online; last accessed 4-August-2021].

217

https://github.com/micropython/micropython
https://www.nordicsemi.com/products/nrf52832

BIBLIOGRAPHY

[127] E. NUTTING, Feasibility of an integrated hardware garbage collector.

https://dbms.services.bris.ac.uk/media/user/327146/Thesis.pdf, 2017.

[Online; last accessed 01-April-2020].

[128] NXP SEMICONDUCTORS, i.MX RT1020 Crossover MCU with Arm Cortex-M7 core.

https://www.nxp.com/products/processors-and-microcontrollers/arm-

microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1020-crossover-mcu-with-

arm-cortex-m7-core:i.MX-RT1020.

[Online; last accessed 4-August-2021].

[129] ORACLE, Java platform, standard edition HotSpot virtual machine garbage collection

tuning guide.

https://docs.oracle.com/javase%2F8%2Fdocs%2Ftechnotes%2Fguides%2Fvm%

2Fgctuning%2F%2F/.

[Online; last accessed 20-February-2020].

[130] J. PALLISTER, S. HOLLIS, AND J. BENNETT, BEEBS: Open benchmarks for energy mea-

surements on embedded platforms, arXiv preprint arXiv:1308.5174, (2013).

[131] P. PERSSON, Live memory analysis for garbage collection in embedded systems, ACM

SIGPLAN Notices, 34 (1999), pp. 45–54.

[132] F. PIZLO, D. FRAMPTON, E. PETRANK, AND B. STEENSGAARD, Stopless: A real-time

garbage collector for multiprocessors, in Proceedings of the 6th International Sympo-

sium on Memory Management (ISMM), 2007, pp. 159––172.

[133] F. PIZLO, E. PETRANK, AND B. STEENSGAARD, A study of concurrent real-time garbage

collectors, in Proceedings of the 29th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), 2008, pp. 33—-44.

[134] F. PIZLO, L. ZIAREK, AND J. VITEK, Real time Java on resource-constrained platforms

with Fiji VM, in Proceedings of the 7th International Workshop on Java Technologies

for Real-Time and Embedded Systems, 2009, pp. 110–119.

[135] PTC, Real-time Java – PTC Perc.

https://www.ptc.com/en/products/developer-tools/perc.

[Online; last accessed 22-April-2020].

[136] I. PUAUT, Real-time performance of dynamic memory allocation algorithms, in Proceedings

of the 14th Euromicro Conference on Real-Time Systems, IEEE, 2002, pp. 41–49.

[137] W. PUFFITSCH, B. HUBER, AND M. SCHOEBERL, Worst-case analysis of heap allocations,

in Proceedings of the International Symposium On Leveraging Applications of Formal

Methods, Verification and Validation, Springer, 2010, pp. 464–478.

218

https://dbms.services.bris.ac.uk/media/user/327146/Thesis.pdf
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1020-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1020
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1020-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1020
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1020-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1020
https://docs.oracle.com/javase%2F8%2Fdocs%2Ftechnotes%2Fguides%2Fvm%2Fgctuning%2F%2F/
https://docs.oracle.com/javase%2F8%2Fdocs%2Ftechnotes%2Fguides%2Fvm%2Fgctuning%2F%2F/
https://www.ptc.com/en/products/developer-tools/perc

BIBLIOGRAPHY

[138] RED HAT, Newlib.

http://www.sourceware.org/newlib/, 2018.

[Online; last accessed 5-February-2019].

[139] J. REGEHR, N. COOPRIDER, W. ARCHER, AND E. EIDE, Efficient type and memory safety for

tiny embedded systems, in Proceedings of the 3rd Workshop on Programming Languages

and Operating Systems: Linguistic Support for Modern Operating Systems, ACM, 2006,

p. 6.

[140] T. RITZAU, Hard real-time reference counting without external fragmentation, in Proceed-

dings of the Java Optimization Strategies for Embedded Systems Workshop at ETAPS

2001, 2001.

[141] T. RITZAU, Memory efficient hard real-time garbage collection, PhD thesis, Linköping

University, 2003.

[142] S. G. ROBERTZ AND R. HENRIKSSON, Time-triggered garbage collection: robust and

adaptive real-time GC scheduling for embedded systems, in Proceedings of the 2003

ACM SIGPLAN Conference on Language, Compiler, and Tool for Embedded Systems,

2003, pp. 93–102.

[143] P. G. SALGADO, Design of CPython’s garbage collector.

[Online; last accessed 20-February-2020].

[144] D. SANCHEZ AND C. KOZYRAKIS, ZSim: Fast and accurate microarchitectural simulation

of thousand-core systems, ACM SIGARCH Computer Architecture News, 41 (2013),

pp. 475–486.

[145] W. J. SCHMIDT AND K. D. NILSEN, Performance of a hardware-assisted real-time garbage

collector, ACM SIGOPS Operating Systems Review, 28 (1994), pp. 76–85.

[146] M. SCHOEBERL, JOP: A Java optimized processor, in Proceedings of the OTM Confederated

International Conferences "On the Move to Meaningful Internet Systems", Springer,

2003, pp. 346–359.

[147] M. SCHOEBERL, Real-time garbage collection for Java, in Proceedings of the 9th IEEE

International Symposium on Object and Component-Oriented Real-Time Distributed

Computing (ISORC’06), IEEE, 2006, pp. 9–pp.

[148] M. SCHOEBERL, Scheduling of hard real-time garbage collection, Real-Time Systems, 45

(2010), pp. 176–213.

[149] M. SCHOEBERL, T. B. PREUSSER, AND S. UHRIG, The embedded Java benchmark suite

JemBench, in Proceedings of the 8th International Workshop on Java Technologies for

Real-Time and Embedded Systems, 2010, pp. 120–127.

219

http://www.sourceware.org/newlib/

BIBLIOGRAPHY

[150] M. SCHOEBERL AND W. PUFFITSCH, Non-blocking object copy for real-time garbage col-

lection, in Proceedings of the 6th International Workshop on Java Technologies for

Real-Time and Embedded Systems, 2008, pp. 77–84.

[151] M. SCHOEBERL AND J. VITEK, Garbage collection for safety critical Java, in Proceedings

of the 5th International Workshop on Java Technologies for Real-Time and Embedded

Systems, 2007, pp. 85–93.

[152] SEMICONDUCTOR INDUSTRY ASSOCIATION AND OTHERS, The international technology

roadmap for semiconductors, tech. rep., 2005.

System Drivers chapter.

[153] SEMICONDUCTOR INDUSTRY ASSOCIATION AND OTHERS, The international technology

roadmap for semiconductors, tech. rep., 2007.

Interconnect chapter.

[154] SEMICONDUCTOR INDUSTRY ASSOCIATION AND OTHERS, The international technology

roadmap for semiconductors, tech. rep., 2013.

[155] SEMICONDUCTOR INDUSTRY ASSOCIATION AND OTHERS, The international technology

roadmap for semiconductors, tech. rep., 2013.

System Drivers chapter.

[156] R. SHAHRIYAR, S. M. BLACKBURN, AND D. FRAMPTON, Down for the count? getting

reference counting back in the ring, in Proceedings of the 2012 International Symposium

on Memory Management, 2012, pp. 73–84.

[157] R. SHAHRIYAR, S. M. BLACKBURN, AND K. S. MCKINLEY, Fast conservative garbage

collection, in Proceedings of the 2014 ACM International Conference on Object Oriented

Programming Systems Languages & Applications, 2014, pp. 121–139.

[158] R. SHAHRIYAR, S. M. BLACKBURN, X. YANG, AND K. S. MCKINLEY, Taking off the gloves

with reference counting immix, ACM SIGPLAN Notices, 48 (2013), pp. 93–110.

[159] F. SIEBERT, Guaranteeing non-disruptiveness and real-time deadlines in an incremental

garbage collector, ACM SIGPLAN Notices, 34 (1998), pp. 130–137.

[160] F. SIEBERT, Hard real-time garbage collection in the Jamaica virtual machine, in Pro-

ceedings of the 6th International Conference on Real-Time Computing Systems and

Applications (RTCSA’99), IEEE, 1999, pp. 96–102.

[161] F. SIEBERT, Real-time garbage collection in multi-threaded systems on a single processor, in

Proceedings of the 20th IEEE International Real-Time Systems Symposium (RTSS’99),

IEEE, 1999, pp. 277–278.

220

BIBLIOGRAPHY

[162] F. SIEBERT, Eliminating external fragmentation in a non-moving garbage collector for

Java, in Proceedings of the 2000 International Conference on Compilers, Architecture,

and Synthesis for Embedded Systems, 2000, pp. 9–17.

[163] F. SIEBERT, Constant-time root scanning for deterministic garbage collection, in Interna-

tional Conference on Compiler Construction, Springer, 2001, pp. 304–318.

[164] F. SIEBERT, Hard Real-Time Garbage Collection in Modern Object Oriented Programming

Languages, PhD thesis, University of Karlsruhe, 2002.

[165] W. SRISA-AN, C.-T. LO, AND J.-M. CHANG, Active memory processor: A hardware garbage

collector for real-time Java embedded devices, IEEE Transactions on Mobile Computing,

2 (2003), pp. 89–101.

[166] STACK OVERFLOW, Developer survey results 2019.

https://insights.stackoverflow.com/survey/2019, 2019.

[Online; last accessed 10-February-2019].

[167] S. STANCHINA AND M. MEYER, Mark-sweep or copying?: A best of both worlds algo-

rithm and a hardware-supported real-time implementation, in Proceedings of the 6th

International Symposium on Memory Management, ACM, 2007, pp. 173–182.

[168] STANDARD PERFORMANCE EVALUATION CORPORATION, SPEC’s benchmarks.

https://www.spec.org/benchmarks.html, 2020.

[Online; last accessed 06-April-2020].

[169] G. L. STEELE JR, Multiprocessing compactifying garbage collection, Communications of

the ACM, 18 (1975), pp. 495–508.

[170] J. E. STINE, I. CASTELLANOS, M. WOOD, J. HENSON, F. LOVE, W. R. DAVIS, P. D.

FRANZON, M. BUCHER, S. BASAVARAJAIAH, J. OH, ET AL., FreePDK: An open-source

variation-aware design kit, in Proceedings of the 2007 IEEE International Conference

on Microelectronic Systems Education (MSE’07), IEEE, 2007, pp. 173–174.

[171] STMICROELECTRONICS, STM32 32-bit ARM Cortex MCUs.

https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-

cortex-mcus.html.

[Online; last accessed 13-January-2021].

[172] STMICROELECTRONICS, STM32F7 series of very high-performance MCUs with Arm Cortex-

M7 core.

https://www.st.com/content/st_com/en/products/microcontrollers-

microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-high-performance-

mcus/stm32f7-series.html.

221

https://insights.stackoverflow.com/survey/2019
https://www.spec.org/benchmarks.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-high-performance-mcus/stm32f7-series.html
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-high-performance-mcus/stm32f7-series.html
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-high-performance-mcus/stm32f7-series.html

BIBLIOGRAPHY

[Online; last accessed 4-August-2021].

[173] R. SUGANYA AND D. MEGANATHAN, High performance VLSI adders, in Proceedings of the

3rd International Conference on Signal Processing, Communication and Networking

(ICSCN), IEEE, 2015, pp. 1–7.

[174] M. SULLIVAN AND R. CHILLAREGE, Software defects and their impact on system avail-

ability — a study of field failures in operating systems, in Proceedings of the 21st

International Symposium on Fault-Tolerant Computing, IEEE, 1991, pp. 2–9.

[175] SYNOPSYS, Coverity static application security testing.

https://www.synopsys.com/software-integrity/security-testing/static-

analysis-sast.html, 2021.

[Online; last accessed 6-January-2021].

[176] TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED, 10nm technology.

https://www.tsmc.com/english/dedicatedFoundry/technology/10nm.htm.

[Online; last accessed 14-July-2020].

[177] G. THOMAS, A proactive approach to more secure code.

https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-

secure-code/, 2019.

[Online; last accessed 03-October-2019].

[178] D. UNGAR, Generation scavenging: A non-disruptive high performance storage reclamation

algorithm, ACM SIGPLAN Notices, 19 (1984), pp. 157–167.

[179] D. UNGAR, R. BLAU, P. FOLEY, D. SAMPLES, AND D. PATTERSON, Architecture of SOAR:

Smalltalk on a RISC, in ACM SIGARCH Computer Architecture News, vol. 12, ACM,

1984, pp. 188–197.

[180] L. UNNIKRISHNAN, S. D. STOLLER, AND Y. A. LIU, Optimized live heap bound analysis,

in Proceedings of the International Workshop on Verification, Model Checking, and

Abstract Interpretation, Springer, 2003, pp. 70–85.

[181] R. USSELMANN, AES (Rijndail) IP Core.

https://opencores.org/projects/aes_core.

[Online; last accessed 28-July-2020].

[182] R. USSELMANN, WISHBONE DMA/Bridge IP Core.

https://opencores.org/projects/wb_dma.

[Online; last accessed 28-July-2020].

222

https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.tsmc.com/english/dedicatedFoundry/technology/10nm.htm
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://opencores.org/projects/aes_core
https://opencores.org/projects/wb_dma

BIBLIOGRAPHY

[183] VIDEO COMPRESSION SYSTEMS PROJECT, Video Compression Systems.

https://opencores.org/projects/video_systems, 2009.

[Online; last accessed 28-July-2020].

[184] N. VIJAYKRISHNAN, N. RANGANATHAN, AND R. GADEKARLA, Object-oriented architectural

support for a Java processor, in Proceedings of the European Conference on Object-

Oriented Programming, Springer, 1998, pp. 330–354.

[185] J. WEIZENBAUM, Recovery of reentrant list structures in SLIP, Communications of the

ACM, 12 (1969), pp. 370–372.

[186] R. WILHELM, J. ENGBLOM, A. ERMEDAHL, N. HOLSTI, S. THESING, D. WHALLEY,

G. BERNAT, C. FERDINAND, R. HECKMANN, T. MITRA, ET AL., The worst-case

execution-time problem — overview of methods and survey of tools, ACM Transactions

on Embedded Computing Systems (TECS), 7 (2008), p. 36.

[187] I. WILLIAMS, The MUSHROOM machine — an architecture for symbolic processing, in

Proceedings of the IEE Colloquium on VLSI and Architectures for Symbolic Processing,

IET, 1989, pp. 4–1.

[188] M. WOLCZKO AND I. WILLIAMS, The influence of the object-oriented language model on a

supporting architecture, in The Interaction of Compilation Technology and Computer

Architecture, Springer, 1994, pp. 223–247.

[189] C. WOLF, PicoRV32 — A Size-Optimized RISC-V CPU.

https://github.com/cliffordwolf/picorv32.

[Online; last accessed 28-July-2020].

[190] C. WOLF, J. GLASER, AND J. KEPLER, Yosys — a free verilog synthesis suite, in Proceedings

of the 21st Austrian Workshop on Microelectronics (Austrochip), 2013.

[191] J. WOODRUFF, R. N. WATSON, D. CHISNALL, S. W. MOORE, J. ANDERSON, B. DAVIS,

B. LAURIE, P. G. NEUMANN, R. NORTON, AND M. ROE, The CHERI capability model:

Revisiting RISC in an age of risk, in Proceedings of the 2014 ACM/IEEE 41st Interna-

tional Symposium on Computer Architecture (ISCA), IEEE, 2014, pp. 457–468.

[192] XILINX, Virtex-5 family overview.

https://www.xilinx.com/support/documentation/data_sheets/ds100.pdf, 2015.

[Online; last accessed 08-August-2021].

[193] XMOS, Everyday capable xCore-200.

https://www.xmos.ai/xcore-200/.

[Online; last accessed 30-December-2020].

223

https://opencores.org/projects/video_systems
https://github.com/cliffordwolf/picorv32
https://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
https://www.xmos.ai/xcore-200/

BIBLIOGRAPHY

[194] X. YANG, S. M. BLACKBURN, D. FRAMPTON, AND A. L. HOSKING, Barriers reconsidered,

friendlier still!, ACM SIGPLAN Notices, 47 (2012), pp. 37–48.

[195] T. YUASA, Real-time garbage collection on general-purpose machines, Journal of Systems

and Software, 11 (1990), pp. 181–198.

[196] ZERYNTH, Zerynth virtual machine.

https://www.zerynth.com/zerynth-virtual-machine, 2019.

[Online; last accessed 10-February-2019].

[197] B. ZORN, Barrier methods for garbage collection, Department of Computer Science, Univer-

sity of Colorado Boulder, 1990.

[198] B. ZORN, The measured cost of conservative garbage collection, Software: Practice and

Experience, 23 (1993), pp. 733–756.

224

https://www.zerynth.com/zerynth-virtual-machine

	List of Tables
	List of Figures
	List of Listings
	Introduction
	Memory Management
	Explicit Memory Managers
	Automatic Memory Managers

	Real-Time Systems
	Thesis Questions and Contributions
	Thesis Outline
	Related Publications

	Background
	Fundamentals of Garbage Collection
	Basic Garbage Collection Algorithms
	Tracing
	Reference Counting
	Comparing Basic Garbage Collection Algorithms

	Generational Garbage Collection
	Incremental and Concurrent Garbage Collection
	Correctness of Incremental and Concurrent Collectors
	Black Mutator
	Gray Mutator
	Incremental and Concurrent Compacting
	The Cost of Read and Write Barriers

	Characterizing Garbage Collection Pauses
	Identifying Pointers
	Summary

	Real-Time Garbage Collection
	System Requirements and Garbage Collectors
	Work-Based Real-Time Garbage Collection
	Baker's Garbage Collector for LISP
	Brooks' Garbage Collector for LISP
	The Treadmill
	Yuasa's Garbage Collector for LISP
	Garbage Collection for the Jamaica Virtual Machine
	Blelloch and Cheng's Multi-Core Garbage Collector
	Ritzau's Reference Counting Garbage Collector

	Problems with Work-Based Real-Time Garbage Collection
	Time-Based Real-Time Garbage Collection
	Henriksson's Low Priority Garbage Collection
	Metronome
	Kim et al's Copying Garbage Collector
	Chang's Hybrid Garbage Collector
	Garbage Collection for Safety Critical Java

	Problems with Existing Real-Time Garbage Collectors
	Tax-and-Spend: An Alternative Scheduling Approach
	Real-Time Garbage Collectors for Multi-Core Systems
	Summary

	Hardware Garbage Collection
	Hardware-Assisted Garbage Collection
	Pauseless
	Joao et al's Hybrid Garbage Collector
	Maas et al's Mark-Sweep Accelerator
	Schoeberl and Puffitsch's Object Copying Accelerator

	Hardware-Implemented Garbage collection
	The Garbage Collected Memory Module
	Active Memory Processor
	Meyer's Copying Garbage Collector
	Stanchina and Meyer's Mark-Compact Garbage Collector
	Gruian and Salcic's Mark-Compact Garbage Collector
	Garbage Collection for Reconfigurable Hardware

	Summary

	Integrated Hardware Garbage Collection
	Designing an Integrated Hardware Garbage Collector
	System Overview
	Pointer and Data Types
	Directory
	Garbage Collector
	Mark Roots
	Mark Objects
	Compact

	Memory Allocation
	Marking On Load and Memory Access Redirection
	Alternative IHGC Designs
	The Collection Algorithm
	Mark Roots
	Marking On Store

	Summary

	Hard Real-Time Analysis with the IHGC
	Pauses in the IHGC
	Analysis Overview
	Worst-Case Memory Requirement
	Timing Model for the IHGC
	Initialization and Termination (tinit)
	Mark Roots (troots)
	Mark Objects (tmark)
	Compact (tcompact)

	Static Program Analysis
	Memory Allocated (a) and Spare Memory Cycles (tf)
	Live Size (n, r, d, s, c)
	Number of Pointers (p)

	Summary

	Experimental Evaluation
	Evaluation Platform
	Benchmarks
	Compiler and Toolchain
	Measuring Performance
	Characterizing Memory Cycles
	The IHGC and Software Memory Managers
	Pauses
	Tag, Directory and Header Overheads

	Hard Real-Time Analysis in Practice
	Real-Time Evaluation Methodology
	Real-Time Analysis Benchmarks
	Case Study: Converter
	Case Study: Router
	Scaling Up the Hard Real-Time Analysis

	Summary

	Architecting a Garbage Collected Embedded System
	Garbage Collection in Instruction Set Design
	Problem Statement
	Architectural Challenges
	Background
	Operations on Pointer and Value Types
	Function Call Stack
	Exception and Interrupt Handling
	I/O Devices
	Linking Programs Statically

	Case Studies
	BEEBS and TACLe Benchmark Suites
	FreeRTOS and Mbed TLS
	LittlevGL
	MicroPython

	Summary

	Microarchitecture of the IHGC
	Overview
	Background
	Process Technology
	Memory

	Microarchitecture of an IHGC System
	Main Memory
	Directory
	IHGC State Machine
	Processor Pipeline
	Interleaving

	Hardware Costs
	IHGC State Machine
	Main Memory
	Directory

	Clock Speed
	Discussion
	Clock Speed
	Memory Overheads
	Scaling Up

	Summary

	Evaluation of the IHGC Microarchitecture
	Evaluation Platform
	Benchmarks
	Compiler and Toolchain
	Results
	Memory Requirements
	Characterizing Memory Cycles
	Pauses
	Pipeline Stalls

	Summary

	Conclusions
	Conclusions and Future Work
	Contributions
	Design of the IHGC
	Real-time Analysis with the IHGC
	The IHGC in a Practical Embedded System
	Evaluation of the IHGC

	Future Work
	Software Ecosystem
	Real-Time Analysis
	Scaling Up the IHGC

	Conclusions

	Appendices
	Integrated Hardware Garbage Collector State Machine
	Notation
	Definitions
	Initialization
	Mark Roots
	Mark Objects
	Compact
	Termination
	Memory Access
	Memory Allocation
	Helper Functions and Procedures

	Bibliography

